您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 13-20.doi: 10.6040/j.issn.1672-3961.1.2016.165

• • 上一篇    下一篇

一种基于模糊信息熵的协同过滤推荐方法

林耀进,张佳,林梦雷,王娟   

  1. 闽南师范大学计算机学院, 福建 漳州 363000
  • 收稿日期:2016-03-01 出版日期:2016-10-20 发布日期:2016-03-01
  • 作者简介:林耀进(1980— ),男,福建漳浦人,副教授,博士,主要研究方向为数据挖掘与信息处理.E-mail:yjlin@mnnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61303131);福建省高校新世纪优秀人才支持计划;福建省高校杰出青年科研人才培养计划资助项目(JA14192)

A method of collaborative filtering recommendation based on fuzzy information entropy

LIN Yaojin, ZHANG Jia, LIN Menglei, WANG Juan   

  1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Received:2016-03-01 Online:2016-10-20 Published:2016-03-01

摘要: 针对评分数据的稀疏性制约协同过滤推荐性能的情况,提出一种新的相似性度量方法。首先,定义了用户的模糊信息熵以反映用户评分偏好的不确定程度;其次,利用两两用户的模糊互信息衡量用户之间的相似程度;最后,同时考虑用户之间的模糊互信息和用户的模糊信息熵,并设计一种基于模糊信息熵的相似性度量方法以计算用户之间的相似性。在两个公开数据集上的试验结果表明:基于模糊信息熵的相似性度量方法能够降低数据稀疏性的影响,并能显著提高推荐系统的推荐性能。

关键词: 协同过滤, 数据稀疏性, 模糊互信息, 相似性, 模糊信息熵

Abstract: The performance of collaborative filtering was restricted by the sparsity of rating data. To solve this problem, a novel similarity measure based on fuzzy mutual information was proposed. First, the definition of user fuzzy information entropy was given to reflect the uncertainty degree of rating preference. Then, the fuzzy mutual information between users was introduced to measure the similarity degree between users. Finally, the fuzzy information entropy based on similarity measure method was designed to calculate the similarity between users by considering not only the fuzzy mutual information between users but also user fuzzy information entropy. Experimental results on two benchmark data sets showed that the fuzzy information entropy based similarity measure method could reduce the influence of the data sparsity, and the recommendation performance of systems had significant improvements.

Key words: data sparsity, fuzzy information entropy, fuzzy mutual information, collaborative filtering, similarity

中图分类号: 

  • TP391
[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749.
[2] PAPAGELIS M, PLEXOUSAKIS D, KUTSURAS T. Alleviating the sparsity problem of collaborative filtering using trust inferences[C] //Proc of the 3rd International Conference on Trust Management. Berlin, Germany: Springer, 2005:224-239.
[3] SHI Yue, LARSON M, HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges[J]. ACM Computing Surveys, 2014, 47(1):3:1-3:45.
[4] RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C] //Proc of the ACM Conference on Computer Supported Cooperative Work. New York, USA: ACM, 1994:175-186.
[5] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C] //Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, USA: Morgan Kaufmann Publishers Inc, 1998:43-52.
[6] 吴湖,王永吉,王哲,等.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. WU Hu, WANG Yongji, WANG Zhe, et al. Two-phase collaborative filtering algorithm based on co-clustering[J]. Journal of Software, 2010, 21(5):1042-1054.
[7] 杨兴耀,于炯,吐尔根·伊布拉音,等.融合奇异性和扩展过程的协同过滤模型[J].软件学报,2013,24(8):1868-1884. YANG Xingyao, YU Jiong, IBRAHIM Turgun, et al. Collaborative filtering model fusing singularity and diffusion process[J]. Journal of Software, 2013, 24(8): 1868-1884.
[8] 林耀进,胡学钢,李慧宗.基于用户群体影响的协同过滤推荐算法[J].情报学报,2013,32(3):299-305. LIN Yaojin, HU Xuegang, LI Huizong. Collaborative filtering recommendation algorithm based on user group influence[J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(3):299-305.
[9] 张佳,林耀进,林梦雷,等.基于目标用户近邻修正的协同过滤算法[J].模式识别与人工智能,2015,28(9):802-810. ZHANG Jia, LIN Yaojin, LIN Menglei, et al. Target users neighbors modification based collaborative filtering[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(9): 802-810.
[10] SARWAR B, KARPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] //Proc of the 10th International Conference on World Wide Web. New York, USA: ACM, 2001: 285-295.
[11] KALELI C. An entropy-based neighbor selection approach for collaborative filtering[J]. Knowledge-Based Systems, 2014, 56: 273-280.
[12] JAMALI M, ESTER M. TrustWalker: a random walk model for combining trust-based and item-based recommendation[C] //Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 397-406.
[13] ZHANG J, LIN Y, LIN M, et al. An effective collaborative filtering algorithm based on user preference clustering[J]. Applied Intelligence, 2016, 45(2):230-240.
[14] 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. HUANG Chuangguang, YIN Jian, WANG Jing, et al. Uncertain neighbors collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8):1369-1377.
[15] 张佳,林耀进,林梦雷,等.基于信息熵的协同过滤算法[J].山东大学学报(工学版),2016,46(2):43-50. ZHANG Jia, LIN Yaojin, LIN Menglei, et al. Entropy-based collaborative filtering algorithm[J]. Journal of Shandong University(Engineering Science), 2016, 46(2):43-50.
[16] BOBADILLA J, HERNANDO A, ORTEGA F, et al. Collaborative filtering based on significances[J]. Information Sciences, 2012, 185(1):1-17.
[1] 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15.
[2] 张莉, 夏佩佩, 李凡长. 基于余弦相似性的供应商选择方法[J]. 山东大学学报(工学版), 2017, 47(1): 1-6.
[3] 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61.
[4] 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36.
[5] 钟智彦,文志强, 张潇云,叶德刚. 基于半色调图像的邻域相似性描述子方法[J]. 山东大学学报(工学版), 2016, 46(3): 58-64.
[6] 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50.
[7] 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73.
[8] 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50.
[9] 王会青,孙宏伟,张建辉. 基于Map/Reduce的时间序列相似性搜索算法[J]. 山东大学学报(工学版), 2016, 46(1): 15-21.
[10] 孙远帅,陈垚,刘向荣,陈珂,林琛. 基于项目层次相似性的推荐算法[J]. 山东大学学报(工学版), 2014, 44(3): 8-14.
[11] 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21.
[12] 刘一方1,2, 张云峰1,2*, 迟静1,2,张彩明1,2. 基于SSLUT的颜色空间转换的快速算法[J]. 山东大学学报(工学版), 2013, 43(1): 41-47.
[13] 李改1,2,3, 李磊2,3. 一种解决协同过滤系统冷启动问题的新算法[J]. 山东大学学报(工学版), 2012, 42(2): 11-17.
[14] 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142.
[15] 王新沛1,刘常春1*,白曈2. 基于均值距离的图像分割方法[J]. 山东大学学报(工学版), 2010, 40(4): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .