您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 42-46.doi: 10.6040/j.issn.1672-3961.0.2018.346

• 机器学习与数据挖掘 • 上一篇    下一篇

基于信任网络重构的推荐算法

胡云1(),张舒2,*(),李慧3,4,佘侃侃1,施珺3   

  1. 1. 南京中医药大学信息技术学院, 江苏 南京 210023
    2. 淮海工学院商学院, 江苏 连云港 222001
    3. 淮海工学院计算机工程学院, 江苏 连云港 222001
    4. 江苏省海洋资源开发研究院, 江苏 连云港 222005
  • 收稿日期:2018-08-16 出版日期:2019-04-20 发布日期:2019-04-19
  • 通讯作者: 张舒 E-mail:1150290259@qq.com;shufanzs@126.com
  • 作者简介:胡云(1978—),女,江苏连云港人,副教授,博士研究生,主要研究方向为复杂网络,人工智能. E-mail: 1150290259@qq.com
  • 基金资助:
    江苏高校“青蓝工程”培养对象;江苏省333人才培养工程;教育部协同育人项目(201702134005);教育部协同育人项目(201701028110);连云港市科技计划项目(JC1608);连云港市科技计划项目(CG1611);连云港市“521高层次人才培养工程”(RJFW-041);江苏省“六大人才高峰”资助项目(ZKK201604)

Recommendation algorithm based on trust network reconfiguration

Yun HU1(),Shu ZHANG2,*(),Hui LI3,4,Kankan SHE1,Jun SHI3   

  1. 1. College of Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
    2. Business School, Huaihai Institute of Technology, Lianyungang 222001, Jiangsu, China
    3. Department of Computer Science, Huaihai Institute of Technology, Lianyungang 222001, Jiangsu, China
    4. Marine Resources Development Institute of Jiangsu, Lianyungang 222005, Jiangsu, China
  • Received:2018-08-16 Online:2019-04-20 Published:2019-04-19
  • Contact: Shu ZHANG E-mail:1150290259@qq.com;shufanzs@126.com
  • Supported by:
    江苏高校“青蓝工程”培养对象;江苏省333人才培养工程;教育部协同育人项目(201702134005);教育部协同育人项目(201701028110);连云港市科技计划项目(JC1608);连云港市科技计划项目(CG1611);连云港市“521高层次人才培养工程”(RJFW-041);江苏省“六大人才高峰”资助项目(ZKK201604)

摘要:

基于信任网络的重构问题,提出一种新颖的推荐算法。将用户相似值与信任关系相结合构建初始信任网络,对用户未评分项进行初始预测;利用一种基于可靠性度量方法评价预测评分的质量,对于未评分项目根据新组建的用户信任网络进行最终评分预测。在两个真实数据集Epinions和Flixster上进行了性能验证,试验结果表明,信任网络的重构可以有效解决推荐系统中的数据稀疏问题,在查全率和查准率上优于传统的推荐算法。

关键词: 信任度, 协同过滤, 社会网络, 重构, 推荐

Abstract:

A new recommendation algorithm was investigated base on the problem of trust network reconfiguration. The initial trust network was constructed by combining the user similarity value with the trust relationship, and the initial prediction of the user's unrated items was carried out.A method based on reliability was used to evaluate the quality of prediction score. The unrated items were predicted according to the new user trust network. The performance was verified on two real data sets, which were Epinions dataset and Flixster dataset. The experimental results showed that the reconfiguration algorithm of trust network effectively solved the problem of data sparsity in recommendation system, and it was superior to the traditional recommendation algorithm in recall and precision ratio.

Key words: trust, collaborative filtering, social network, reconstruction, recommendation

中图分类号: 

  • TP391

图1

推荐方法流程图"

图2

不同的参数θ在MAE上的结果"

图3

不同的参数θ在MAUE上的结果"

图4

Epinion数据集上算法对比试验结果"

图5

Flixter数据集上算法对比试验结果"

1 ZAMAN F , ELSAYED S M , RAY T , et al. Configuring two-algorithm-based evolutionary approach for solving dynamic economic dispatch problems[J]. Engineering Applications of Artificial Intelligence, 2016, 53 (1): 105- 125.
2 方耀宁, 郭云飞, 兰巨龙. 基于Logistic函数的贝叶斯概率矩阵分解算法[J]. 电子与信息学报, 2014, 36 (3): 715- 720.
FANG Yaoning , GUO Yunfei , LAN Juling . A bayesian probabilistic matrix factorization algorithm based on logistic function[J]. Journal of Electronics & Information Technology, 2014, 36 (3): 715- 720.
3 FAYOLLEAYOLLE P A , PASKOASKO A . An evolutionary approach to the extraction of object construction trees from 3D point clouds[M]. Butterworth-Heinemann, 2016.
4 SILVA E , CAMILO J , PASCOAL M L , et al. An evolutionary approach for combining results of recommender systems techniques based on collaborative filtering[J]. Expert Systems with Applications, 2016, 53 (2): 204- 218.
5 郭弘毅, 刘功申, 苏波, 等. 融合社区结构和兴趣聚类的协同过滤推荐算法[J]. 计算机研究与发展, 2016, 53 (8): 1664- 1672.
GUO Hongyi , LIU Gongshen , SU Bo . Collaborative filtering recommendation algorithm combing community structure and interest clusters[J]. Journal of Computer Research and Development, 2016, 53 (8): 1664- 1672.
6 GUO G , ZHANG J , SMITH N Y . Leveraging multiviews of trust and similarity to enhance clustering-based recommender systems[J]. Knowledge-Based Systems, 2017, 74 (1): 14- 27.
7 SHEUGH L , ALIZADEH S H . A novel 2D-graph clustering method based on trust and similarity measures to enhance accuracy and coverage in recommender systems[J]. Information Sciences, 2018, 432 (1): 210- 230.
8 涂丹丹, 舒承椿, 余海燕. 基于联合概率矩阵分解的上下文广告推荐算法[J]. 软件学报, 2015, (3): 454- 464.
TU Dandan , SHU Chengchun , YU Haiyan . Using unified probabilistic matrix factorization for contextual advertisement recommendation[J]. Journal of Software, 2015, (3): 454- 464.
9 XU J , ZHONG Y , ZHU W . Trust-based context-aware mobile social network service recommendation[J]. Wuhan University Journal of Natural Sciences, 2017, 22 (2): 149- 156.
doi: 10.1007/s11859-017-1228-3
10 SHI L , ZHAO W X , SHEN Y D . Local representative-based matrix factorization for cold-start recommendation[J]. Acm Transactions on Information Systems, 2017, 36 (2): 1- 28.
11 PIRASTEH P , HWANG D , & JUNG J . Exploiting matrix factorization to asymmetric user similarities in recommendation systems[J]. Knowledge-Based Systems, 2016, 83 (1): 51- 57.
12 FERNANDES B R , PLA F . Incremental probabilistic latent semantic analysis for video retrieval[J]. Image & Vision Computing, 2015, 38 (1): 1- 12.
13 YIN J , HO Q , XING E P . A scalable approach to probabilistic latent space inference of large-scale networks[J]. Advances in Neural Information Processing Systems, 2013, 2013 (1): 422- 430.
14 FITZGERALD J , GAMBLE C , PAYNE R , et al. Collaborative model-based systems engineering for cyber-physical systems, with a building automation case study[J]. Incose International Symposium, 2016, 26 (1): 817- 832.
doi: 10.1002/iis2.2016.26.issue-1
15 FEINBERG E A , KASYANOV P O , ZGUROVSKY M Z . Partially observable total-cost markov decision processes with weakly continuous transition probabilities[J]. Mathematics of Operations Research, 2016, 41 (2): 591- 607.
16 MORADI P , AHMADIAN S . A reliability-based recommendation method to improve trust-aware recommender systems[J]. Expert Systems with Applications, 2015, 42 (21): 7386- 7398.
doi: 10.1016/j.eswa.2015.05.027
17 NAZEMIN A, GHOLAMI H, TAGHIYAREH F. An improved model of trust-aware recommender systems using distrust metric[C]//International Conference on Advances in Social Networks Analysis and Mining. Istanbul, Turkey: IEEE, 2012: 1079-1084.
18 DENG S , HUANG L , XU G . Social network-based service recommendation with trust enhancement[J]. Expert Systems with Applications, 2014, 41 (2): 8075- 8084.
19 YANG X , GUO Y , LIU Y . Bayesian-inference-based recommendation in online social networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 24 (4): 642- 651.
20 GUO G , ZHANG J , THALMAN D . Merging trust in collaborative filtering to alleviate data sparsity and cold start[J]. Knowledge-Based Systems, 2014, 57 (1): 57- 68.
[1] 钱春琳,张兴芳,孙丽华. 基于在线评论情感分析的改进协同过滤推荐模型[J]. 山东大学学报 (工学版), 2019, 49(1): 47-54.
[2] 何文杰 ,何伟超,孙权森. 压缩感知重构算法的并行化及GPU加速[J]. 山东大学学报(工学版), 2018, 48(3): 110-114.
[3] 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102.
[4] 邓俊武,张玉民,张红娣,杜晓坤. X尾翼无人机的故障诊断和容错控制方法[J]. 山东大学学报(工学版), 2017, 47(5): 166-172.
[5] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[6] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[7] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[8] 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79.
[9] 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61.
[10] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[11] 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36.
[12] 侯燕,杨猛. 高效解决复杂拓扑问题的显式界面追踪算法[J]. 山东大学学报(工学版), 2016, 46(4): 15-20.
[13] 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50.
[14] 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73.
[15] 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[3] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[4] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[5] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[6] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[7] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[8] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[9] 孙国华,吴耀华,黎伟. 消费税控制策略对供应链系统绩效的影响[J]. 山东大学学报(工学版), 2009, 39(1): 63 -68 .
[10] 孙炜伟,王玉振. 考虑饱和的发电机单机无穷大系统有限增益镇定[J]. 山东大学学报(工学版), 2009, 39(1): 69 -76 .