山东大学学报 (工学版) ›› 2018, Vol. 48 ›› Issue (5): 16-23.doi: 10.6040/j.issn.1672-3961.0.2017.409
Dongbo ZHANG1,2(),Tao KOU1,2,Haixia XU1,2
摘要:
提出一种新的基于局部差异二值(local difference binary, LDB)描述子和局部空间结构匹配方法实现快速场景辨识,运用多重网格密集采样得到图像区域的灰度和梯度信息,比较网格间的灰度和梯度进行二值描述,继承了二值特征提取的快速和低存储的优点。通过构建特征点的局部空间分布约束,将局域内的多点匹配取代单点匹配,排除了大量错配点,提升了匹配的准确率。试验表明,本研究方法计算效率约是尺度不变特征变换(scale-invariant feature transform, SIFT)的2.7倍,加速稳健特征(speeded up robust features, SURF)的1.9倍,充分验证了本研究方法的有效性和识别性能。
中图分类号:
1 |
LOWE D G . Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
2 | BAY H, TUYTELAARS T, GOOL L V. SURF: speeded up robust features[C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2006: 404-417. |
3 | RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 2564-2571. |
4 | OJALA T , PIETIKÄINEN M , MÄENPÄÄ T . Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 24 (7): 971- 987. |
5 |
TAKACS G , CHANDRASEKHAR V , TSAI S S , et al. Fast computation of rotation-invariant image features by an approximate radial gradient transform[J]. IEEE Transactions on Image Processing A:Publication of the IEEE Signal Processing Society, 2013, 22 (8): 2970- 2982.
doi: 10.1109/TIP.2012.2230011 |
6 | WANG Z, FAN B, WU F. Local intensity order pattern for feature description[C]//International Conference on Computer Vision. Barcelona, Spain: IEEE Computer Society, 2011: 603-610. |
7 |
MOREL J M , YU G . ASIFT: a new framework for fully affine invariant image comparison[J]. SIAM Journal on Imaging Sciences, 2009, 2 (2): 438- 469.
doi: 10.1137/080732730 |
8 | HUA G, BROWN M, WINDER S. Discriminant embedding for local image descriptors[C]//IEEE, International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007: 1-8. |
9 | 汤伯超, 蔡念, 程昱. 基于颜色量化矩阵的SIFT特征描述方法[J]. 山东大学学报(工学版), 2011, 41 (2): 46- 50. |
TANG Bochao , CAI Nian , CHENG Yu . A novel SIFT descriptor based on a color quantization matrix[J]. Journal of Shandong University(Engineering Science), 2011, 41 (2): 46- 50. | |
10 | CALONDER M , LEPETIT V , OZUYSAL M , et al. BRIEF: computing a local binary descriptor very fast[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34 (7): 1281- 1298. |
11 | LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]//IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2012: 2548-2555. |
12 | FISCHLER M A , BOLLES R C . Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[M]. New York, USA: ACM, 1981. |
13 | TORR P H S , ZISSERMAN A . MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision & Image Understanding, 2000, 78 (1): 138- 156. |
14 | CHIN T J , YU J , SUTER D . Accelerated hypothesis generation for multistructure data via preference analysis[M]. Washington D. C., USA: IEEE Computer Society, 2012. |
15 | RAGURAM R, FRAHM J M, POLLEFEYS M. A Comparative analysis of RANSAC techniques leading to adaptive real-time random sample consensus[M]//Computer Vision: ECCV 2008. Berlin Heidelberg, Germany: Springer, 2008: 500-513. |
16 | CHUM O, MATAS J, KITTLER J. Locally optimized RANSAC[C]//Joint Pattern Recognition Symposium. Berlin Heidelberg, Germany: Springer-Verlag, 2003: 236-243. |
17 | SATTLER T, LEIBE B, KOBBELT L. SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter[C]//IEEE, International Conference on Computer Vision. Kyoto, Japan: IEEE, 2010: 2090-2097. |
18 |
PIZARRO D , BARTOLI A . Feature-Based deformable surface detection with self-occlusion reasoning[J]. International Journal of Computer Vision, 2012, 97 (1): 54- 70.
doi: 10.1007/s11263-011-0452-0 |
19 | LIN W Y D, CHENG M M, LU J, et al. Bilateral functions for global motion modeling[C]//European Conference on Computer Vision. Cham, Switzerland: Springer, 2014: 341-356. |
20 | LIN W Y, LIU S, JIANG N, et al. RepMatch: robust feature matching and pose for reconstructing modern cities[C]//European Conference on Computer Vision. Cham, Switzerland: Springer, 2016: 562-579. |
21 | LIPMAN Y , YAGEV S , PORANNE R , et al. Feature matching with bounded distortion[J]. Acm Transactions on Graphics, 2014, 33 (3): 26. |
22 | MAIER J, HUMENBERGER M, MURSCHITZ M, et al. Guided matching based on statistical optical flow for fast and robust correspondence analysis[C]//European Conference on Computer Vision. Berlin Heidelberg, Germany: Springer International Publishing, 2016: 101-117. |
23 | LIN W Y , WANG F , CHENG M M , et al. CODE: coherence based decision boundaries for feature correspondence[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, (99): 34- 47. |
24 | BIAN J W, LIN W Y, YASUYUKI M. GMS: grid-based motion statistics for fast, ultra-robust feature correspondence[C]//Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2017: 4181-4190. |
25 | YANG X , CHENG K T . Local difference binary for ultrafast and distinctive feature description[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 36 (1): 188. |
[1] | 褚晓东,唐茂森,高旭,刘伟生,贾善杰,李笋. 基于集中式信息系统的主动配电网鲁棒优化调度[J]. 山东大学学报(工学版), 2017, 47(6): 20-25. |
[2] | 侯明冬,王印松,田杰. 积分时滞对象的一种内模PID鲁棒控制方法[J]. 山东大学学报(工学版), 2016, 46(5): 64-67. |
[3] | 周凯,元昌安,覃晓,郑彦,冯文铎. 基于核贝叶斯压缩感知的人脸识别[J]. 山东大学学报(工学版), 2016, 46(3): 74-78. |
[4] | 李小华, 严慰, 刘洋. 广义扩展大系统的鲁棒分散有限时间关联镇定[J]. 山东大学学报(工学版), 2015, 45(6): 16-28. |
[5] | 魏伟, 戴明, 李嘉全, 毛大鹏, 李贤涛. 基于频域的光电稳定平台扰动观测器设计[J]. 山东大学学报(工学版), 2015, 45(4): 45-49. |
[6] | 张慧慧, 夏建伟. 不确定随机多时滞系统鲁棒随机稳定性分析[J]. 山东大学学报(工学版), 2015, 45(1): 54-63. |
[7] | 葛凯蓉, 常发亮, 董文会. 基于局部敏感直方图的稀疏表达跟踪算法[J]. 山东大学学报(工学版), 2014, 44(5): 14-19. |
[8] | 解静, 考永贵, 高存臣, 张孟乔. 变时滞不确定广义Markovian跳系统的滑模控制[J]. 山东大学学报(工学版), 2014, 44(4): 31-38. |
[9] | 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5. |
[10] | 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78. |
[11] | 周长辉1, 胡永健2,余绍鹏1. 鲁棒的源扫描仪辨识算法设计[J]. 山东大学学报(工学版), 2011, 41(2): 62-65. |
[12] | 黄斌. 基于离散趋近律的变结构系统控制[J]. 山东大学学报(工学版), 2011, 41(1): 45-48. |
[13] | 李岳阳,王士同. 基于鲁棒性神经模糊网络的脉冲噪声滤波算法[J]. 山东大学学报(工学版), 2010, 40(5): 164-170. |
[14] | 王玉振1,刘玉常2,冯刚3. 非线性哈密顿控制系统输出反馈同时镇定(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 52-63. |
[15] | 赵永国,贾磊,蔡文剑 . 一种积分过程PID自整定方法[J]. 山东大学学报(工学版), 2008, 38(1): 48-51 . |
|