您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 31-38.doi: 10.6040/j.issn.1672-3961.0.2013.309

• 控制科学与工程 • 上一篇    下一篇

变时滞不确定广义Markovian跳系统的滑模控制

解静1, 考永贵2, 高存臣3, 张孟乔2   

  1. 1. 中国海洋大学信息科学与工程学院, 山东 青岛 266100;
    2. 哈尔滨工业大学理学院数学系, 山东 威海 264209;
    3. 中国海洋大学数学科学学院, 山东 青岛 266100
  • 收稿日期:2013-10-30 修回日期:2014-05-30 发布日期:2013-10-30
  • 作者简介:解静(1987-),女,山东泰安人,博士研究生,主要研究方向为随机控制系统的理论及应用.E-mail:tiantian1210x@163.com
  • 基金资助:
    国家高技术研究发展计划(863计划)资助项目(2008 AA04Z401,2009AA043404);教育部重点科研基金资助项目(NCET-08-0755)

Integral sliding mode control for uncertain stochastic singular Markovian jump systems with time-varying delays

XIE Jing1, KAO Yonggui2, GAO Cunchen3, ZHANG Mengqiao2   

  1. 1. College of Information Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Department of Mathematics, Harbin Institute of Technology, Weihai 264209, Shandong, China;
    3. School of Mathematical Sciences, Ocean University of China, Qingdao 266100, Shandong, China
  • Received:2013-10-30 Revised:2014-05-30 Published:2013-10-30

摘要: 针对一类含有变时滞和非匹配不确定参数的随机广义Markovian跳系统,提出一种滑模控制的方案。首先构造不带跳变的切换函数,利用线性矩阵不等式给出该系统随机鲁棒渐近稳定的充分条件;然后,为使闭环系统的状态轨迹在有限时间内到达切换面,利用Lyapunov稳定性方法设计了滑模控制器及切换规则;最终使闭环系统产生稳定的滑动模态。数值算例验证了该方法的有效性和可行性。

关键词: 随机广义Markovian跳系统, 变时滞, 不确定参数, 随机鲁棒渐近稳定, 滑模控制器

Abstract: A sliding mode control scheme was proposed for a class of stochastic singular Markovian jump systems with time-varying delays and mismatched uncertain parameters. A switching function without Markovian jump were constructed at first, and a sufficient condition of the stochastically robust asymptotic stability was obtained for the system in terms of linear matrix inequalities(LMIs). Secondly, sliding mode controllers and switching laws are designed by the Lyapunov stability method to make state trajectories of the closed-loop system reach switching surfaces in finite time. Finally, the stable sliding mode dynamics was resulted for the closed-loop system. The proposed scheme was testified to be effective and feasible by a numerical example.

Key words: stochastic singular Markovian jump system, stochastically robust asymptotic stability, time-varying delay, sliding mode controller, uncertain parameter

中图分类号: 

  • TP271
[1] XU S Y, LAM J. Robust control and filtering of singular systems[M]. 1st ed. New York: Springer-Verlag, 2006.
[2] BOUKAS E K. Stochastic switching systems: analysis and design[M]. 1st ed. Berlin: Birkhauser, 2005.
[3] KAO Y G, WANG C H, ZHANG L X. Delay-dependent exponential stability of impulsive Markovian jumping Cohen-Grossberg neural networks with reaction-diffusion and mixed delay[J]. Neural Processing Letters, 2013, 38(3):321-346.
[4] KAO Y G, WANG C H, ZHA F S, et al. Stability in mean of partial variables for stochastic reaction-diffusion systems with Markovian switching[J]. Journal of Franklin Institute, 2014, 351:500-512.
[5] MAO X R, YUAN C G. Stochastic differential equations with Markovian switching[M]. 1st ed. London: Imperial College Press, 2006.
[6] DING Y C, ZHU H, ZHONG S M, et al. Exponential mean-square stability of time-delay singular systems with Markovian switching and nonlinear perturbations[J]. Applied Mathematics and Computation, 2012, 219(4):2350-2359.
[7] MA S P, BOUKAS E K. Guaranteed cost control of uncertain discrete-time singular Markov jump systems with indefinite quadratic cost[J]. International Journal of Robust and Nonlinear Control, 2011, 21(9):1031-1045.
[8] WANG G, ZHANG Q. Robust control of uncertain singular stochastic systems with Markovian switching via proportional-derivative state feedback[J]. IET Control Theory and Applications, 2011, 6(8):1089-1096.
[9] NIU Y G, JIA T G, HUANG H Q. Design of sliding mode control for neutral type systems with time-delay with perturbation in control channels[J]. Optimal Control Applications and Methods, 2012, 33:363-374.
[10] WU L G, WANG C H, GAO H J, et al. Sliding mode H control for a class of uncertain nonlinear state-delayed systems[J]. Journal of Systems Engineering and Electronics, 2006, 17(3):576-585.
[11] CHEN B, NIU Y G, ZOU Y Y. Adaptive sliding mode control for stochastic Markovian jumping systems with actuator degradation[J]. Automatica, 2013, 49(6):1748-1754.
[12] RICHARD P Y, CORMERAIS H, BUISSON J. A generic design methodology for sliding control of switched systems[J]. Nonlinear Analysis, 2006, 65(9):1751-1772.
[13] LIAN J, ZHAO J. Robust control of uncertain switched systems: a sliding mode control design[J]. Auto Automatica Sincia, 2009, 35(7):965-970.
[14] WU L G, SU X J, SHI P. Sliding mode control with bounded H2 gain performance of Markovian jump singular time-delay systems[J]. Automatica, 2010, 48(8):1929-1933.
[15] WU L G, ZHENG W X. Passivity-based sliding mode control of uncertain singular time-delay systems[J]. Automatica, 2009, 45(9):2120-2127.
[16] NIU Y G, DANIEL W C H, LAM J. Robust integral sliding mode control for uncertain stochastic systems with time-varying delay[J]. Automatica, 2005, 41(5):873-880.
[17] 杨冬梅, 张庆灵, 姚波. 广义系统[M]. 1版. 北京: 科学出版社, 2004.
[18] LU R Q, SU H Y, CHU J. Robust controller design for time-varying uncertain linear singular systems with time-delays[J]. International Journal of Systems Science, 2005, 37(8):973-981.
[19] 吴敏, 何勇. 时滞系统鲁棒控制[M]. 1版. 北京: 科学出版社, 2008.
[20] XIE L, SOUZA C E. Robust H control for linear systems with norm bounded time-varying uncertainties[J]. IEEE Transactions on Automatic Control, 1992, 37(8):1188-1191.
[1] 韦建明,胡云安,孙美美. 基于广义跟踪误差的一阶非线性时滞系统自适应迭代学习控制[J]. 山东大学学报(工学版), 2013, 43(6): 34-41.
[2] 孔宪明 鞠培军. 一类中立型不确定变时滞系统的稳定性新判据[J]. 山东大学学报(工学版), 2009, 39(5): 48-51.
[3] 王岩青,钱承山,姜长生 . 中立型不确定变时滞系统的一个时滞相关鲁棒稳定性判据[J]. 山东大学学报(工学版), 2008, 38(1): 116-120 .
[4] 王伟,张焕水 . 网络控制系统估计与控制问题及其解决方法[J]. 山东大学学报(工学版), 2007, 37(3): 11-23 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!