您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 28-34.doi: 10.6040/j.issn.1672-3961.0.2014.328

• 控制科学与工程 • 上一篇    下一篇

四足机器人跳跃步态控制方法

孟健, 李贻斌, 李彬   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2014-11-18 修回日期:2015-04-24 出版日期:2015-06-20 发布日期:2014-11-18
  • 通讯作者: 李贻斌(1960- ),男,山东聊城人,教授,博士,博导,主要研究方向为智能机器人,特种机器人,智能车辆,智能控制和机电一体化.E-mail:liyb@sdu.edu.cn E-mail:liyb@sdu.edu.cn
  • 作者简介:孟健(1986- ),山东济南人,男,博士研究生,主要研究方向为四足机器人控制系统.E-mail: 511906589@qq.com
  • 基金资助:
    国家自然科学基资助项目 (61233014,61305130);山东省自然科学基金资助项目(ZR2013FQ003,ZR2013EEM027);中国博士后科学基金资助项目 (2013M541912)

Bound gait controlling method of quadruped robot

MENG Jian, LI Yibin, LI Bin   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-11-18 Revised:2015-04-24 Online:2015-06-20 Published:2014-11-18

摘要: 针对四足机器人的奔跑控制问题,提出一种基于跳跃(Bound)步态的奔跑控制方法,通过腿部的快速小幅度摆动实现四足机器人的Bound步态。使用有限状态机将机器人的一个运动周期分为6个阶段,其中前腿与后腿各3个阶段,触地缓冲阶段采用竖直弹簧阻尼模型,蹬地阶段使用虚拟模型调整腿部对地推力方向,摆动相使用贝赛尔曲线规划足端轨迹。通过在动力学仿真软件中构建与液压驱动四足机器人SCalf-II同尺寸、同质量的虚拟样机对所提出的方法进行仿真验证与测试,结果表明机器人在5个周期后形成了有较强周期性的Bound步态,前进方向速度波动较小,各关节运动范围、速度、力矩均在SCalf-II设计指标之内,从而验证了该方法的正确性和有效性。

关键词: 四足机器人, 跳跃步态, 控制方法, 贝赛尔曲线, 弹簧阻尼模型, 弹簧负载倒立摆模型

Abstract: Aiming at the problem of running control of quadruped robot, a running control method based on bound gait was proposed. The bound gait of the quadruped robot was implemented by fast and small range swing motion of the legs. A finite state machine was used to separate one complete cycle of motion into six stages, three stages for fore legs and three for hind legs respectively. In contact and buffering stage, vertical spring-damper model was used; in thrust stage, virtual model was used to adjust the thrust direction of the legs; and in swing stage, Bezier curve was used to plan the trajectory of the toes. By constructing a virtual model with the same size and mass with the hydraulic driven quadruped robot SCalf-II in the dynamics simulation software, the control method was verified and tested, simulation results showed that the robot came into a cyclic bounding motion with strong periodicity after five periods, the speed vibration in forward direction was small, the joint range of motion, speed and torque were all within the range of the design objective of SCalf-II, which verified the correctness and effectiveness of the proposed method.

Key words: bound gait, control method, spring loaded inverted pendulum model, spring-damper model, Bezier curve, quadruped robot

中图分类号: 

  • TP242.6
[1] RAIBERT M H, CHEPPONIS M, BROWN Jr H B. Running on four legs as though they were one[J]. IEEE Journal of Robotics and Automation, 1986, 2(2):70-82.
[2] RAIBERT M H. Running with symmetry[J]. The International Journal of Robotics Research, 1986, 5(4):3-19.
[3] ROBERT F. Design of the SCOUT II quadruped with preliminary st air-climbing[D]. Montreal, Canada:McGill University, 1999.
[4] PAPADOPOULOS D. Stable running for a quadruped robot with compliant legs[D]. Montreal,Canada:McGill University, 2000:15.
[5] POULAKAKIS I, SMITH J A, BUEHLER M. Experimentally validated bounding models for the Scout II quadrupedal robot[C]//Proceeding of IEEE International Conference on Robotics and Automation. Barcelona, Spain:the IEEE Press, 2004:2595-2600.
[6] POULAKAKIS I, PAPADOPOULOS E, BUEHLER M. On the stability of the passive dynamics of quadrupedal running with a bounding gait[J]. The International Journal of Robotics Research, 2006, 25(7):669-687.
[7] KAZEMI H, MAJD V J, MOGHADDAM M M. Modeling and robust backstepping control of an underactuated quadruped robot in bounding motion[J]. Robotica, 2013, 31(03):423-439.
[8] DENG Q, WANG S, LIANG Q, et al. The effect of body pitching on leg-spring behavior in quadruped running[J]. Journal of Bionic Engineering, 2010, 7(3):219-227.
[9] WANG H, WANG P, WANG X, et al. Touchdown angle's impact on bounding gait of the quadrupeds[C]//IEEE Conference on Robotics, Automation and Mechatronics. Qingdao, China:the IEEE Press, 2011:178-183.
[10] HABERLAND M, KIM S. On extracting design principles from biology:I. Method—General answers to high-level design questions for bioinspired robots[J]. Bioinspiration & biomimetics, 2015, 10(1):016010.
[11] HABERLAND M, KIM S. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency[J]. Bioinspiration & biomimetics, 2015, 10(1):016011.
[12] RAIBERT M, BLANKESPOOR K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[C]//Proceedings of the 17th World Congress. COEX, Korea: the IFAC, 2008:10822-10825.
[13] 灰触. 美公司研发全新四足机器人, 能跑能跳堪比“机器猫”[EB/OL].[2015-04-06]. http://www.evolife.cn/html/2013/73350.html. HUI Chu. American incorporation developed a new quadruped robot, which can run and jump like “mechnical cat”[EB/OL].[2015-04-06]. http://www.evolife.cn/html/2013/73350.html.
[14] DENAVIT J. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955(22):215-221.
[15] RODENBAUGH S J. RobotBuilder: a graphical software tool for the rapid development of robotic dynamic simulations[D]. Columbus,USA:Ohio State University, 2003:10.
[16] MCMILLAN S, ORIN D E, MCGHEE R B. Efficient dynamic simulation of an underwater vehicle with a robotic manipulator[J]. IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(8):1194-1206.
[17] 荣学文. SCalf液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学控制学院, 2013:20-25. RONG Xuewen. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan: School of Control Science and Engineering, Shandong University, 2013:20-25.
[18] RONG X, FAN H, WANG H, et al. Trajectory planning and motion simulation for a hydraulic actuated biped robot[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(10):3004-3009.
[1] 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49.
[2] 李彬 李贻斌 阮久宏 宋洪军. 基于Wilson-Cowan神经振荡器的四足机器人步态规划研究[J]. 山东大学学报(工学版), 2010, 40(1): 6-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!