山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 28-34.doi: 10.6040/j.issn.1672-3961.0.2014.328
孟健, 李贻斌, 李彬
MENG Jian, LI Yibin, LI Bin
摘要: 针对四足机器人的奔跑控制问题,提出一种基于跳跃(Bound)步态的奔跑控制方法,通过腿部的快速小幅度摆动实现四足机器人的Bound步态。使用有限状态机将机器人的一个运动周期分为6个阶段,其中前腿与后腿各3个阶段,触地缓冲阶段采用竖直弹簧阻尼模型,蹬地阶段使用虚拟模型调整腿部对地推力方向,摆动相使用贝赛尔曲线规划足端轨迹。通过在动力学仿真软件中构建与液压驱动四足机器人SCalf-II同尺寸、同质量的虚拟样机对所提出的方法进行仿真验证与测试,结果表明机器人在5个周期后形成了有较强周期性的Bound步态,前进方向速度波动较小,各关节运动范围、速度、力矩均在SCalf-II设计指标之内,从而验证了该方法的正确性和有效性。
中图分类号:
[1] RAIBERT M H, CHEPPONIS M, BROWN Jr H B. Running on four legs as though they were one[J]. IEEE Journal of Robotics and Automation, 1986, 2(2):70-82. [2] RAIBERT M H. Running with symmetry[J]. The International Journal of Robotics Research, 1986, 5(4):3-19. [3] ROBERT F. Design of the SCOUT II quadruped with preliminary st air-climbing[D]. Montreal, Canada:McGill University, 1999. [4] PAPADOPOULOS D. Stable running for a quadruped robot with compliant legs[D]. Montreal,Canada:McGill University, 2000:15. [5] POULAKAKIS I, SMITH J A, BUEHLER M. Experimentally validated bounding models for the Scout II quadrupedal robot[C]//Proceeding of IEEE International Conference on Robotics and Automation. Barcelona, Spain:the IEEE Press, 2004:2595-2600. [6] POULAKAKIS I, PAPADOPOULOS E, BUEHLER M. On the stability of the passive dynamics of quadrupedal running with a bounding gait[J]. The International Journal of Robotics Research, 2006, 25(7):669-687. [7] KAZEMI H, MAJD V J, MOGHADDAM M M. Modeling and robust backstepping control of an underactuated quadruped robot in bounding motion[J]. Robotica, 2013, 31(03):423-439. [8] DENG Q, WANG S, LIANG Q, et al. The effect of body pitching on leg-spring behavior in quadruped running[J]. Journal of Bionic Engineering, 2010, 7(3):219-227. [9] WANG H, WANG P, WANG X, et al. Touchdown angle's impact on bounding gait of the quadrupeds[C]//IEEE Conference on Robotics, Automation and Mechatronics. Qingdao, China:the IEEE Press, 2011:178-183. [10] HABERLAND M, KIM S. On extracting design principles from biology:I. Method—General answers to high-level design questions for bioinspired robots[J]. Bioinspiration & biomimetics, 2015, 10(1):016010. [11] HABERLAND M, KIM S. On extracting design principles from biology: II. Case study—the effect of knee direction on bipedal robot running efficiency[J]. Bioinspiration & biomimetics, 2015, 10(1):016011. [12] RAIBERT M, BLANKESPOOR K, Nelson G, et al. Bigdog, the rough-terrain quadruped robot[C]//Proceedings of the 17th World Congress. COEX, Korea: the IFAC, 2008:10822-10825. [13] 灰触. 美公司研发全新四足机器人, 能跑能跳堪比“机器猫”[EB/OL].[2015-04-06]. http://www.evolife.cn/html/2013/73350.html. HUI Chu. American incorporation developed a new quadruped robot, which can run and jump like “mechnical cat”[EB/OL].[2015-04-06]. http://www.evolife.cn/html/2013/73350.html. [14] DENAVIT J. A kinematic notation for lower-pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955(22):215-221. [15] RODENBAUGH S J. RobotBuilder: a graphical software tool for the rapid development of robotic dynamic simulations[D]. Columbus,USA:Ohio State University, 2003:10. [16] MCMILLAN S, ORIN D E, MCGHEE R B. Efficient dynamic simulation of an underwater vehicle with a robotic manipulator[J]. IEEE Transactions on Systems, Man and Cybernetics, 1995, 25(8):1194-1206. [17] 荣学文. SCalf液压驱动四足机器人的机构设计与运动分析[D]. 济南: 山东大学控制学院, 2013:20-25. RONG Xuewen. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan: School of Control Science and Engineering, Shandong University, 2013:20-25. [18] RONG X, FAN H, WANG H, et al. Trajectory planning and motion simulation for a hydraulic actuated biped robot[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(10):3004-3009. |
[1] | 辛亚先,李贻斌,李彬,荣学文. 四足机器人静-动步态平滑切换算法[J]. 山东大学学报(工学版), 2018, 48(4): 42-49. |
[2] | 李彬 李贻斌 阮久宏 宋洪军. 基于Wilson-Cowan神经振荡器的四足机器人步态规划研究[J]. 山东大学学报(工学版), 2010, 40(1): 6-9. |
|