山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 54-63.doi: 10.6040/j.issn.1672-3961.0.2014.140
张慧慧, 夏建伟
ZHANG Huihui, XIA Jianwei
摘要: 研究了一类不确定随机多时滞系统的鲁棒随机稳定性问题,其中系统不确定参数满足线性分式结构。首先,将倒数凸方法加以推广,得到一个新的积分不等式引理;然后,充分考虑时滞区间上下限关系,构造了多时滞区间相关的李雅普诺夫函数,并在新的积分不等式方法下,得到具有更小保守性和较少自由变量的时滞相关稳定性条件; 最后,给出一些数值仿真实例,验证了所提方法的有效性。
中图分类号:
[1] HE Y, WANG Q, LIN C, et al. Delay-rang-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2):371-376. [2] YANG R, ZHANG Z, SHI P. Exponential stability on stochastic neural networks with discrete interval and distributed delays[J]. IEEE Transactions on Neural Networks, 2010, 21(1):169-175. [3] PARK P, KO J, JEONG C. Reciprocally convex approach to stability of systems with time-varying delays[J]. Automatica, 2011, 47(1):235-238. [4] WU Z, SHI P, SU H, et al. Delay-dependent exponential stability analysis for discrete-time switched neural networks with time-varying delay[J]. Neurocomputing, 2011, 74(10):1626-1631. [5] WANG C, SHEN Y. Improved delay-dependent robust stability criteria for uncertain time delay systems[J]. Applied Mathematics and Computation, 2011, 35(11):2880-2888. [6] WU H, LIAO X, FENG W, et al. Mean square stability of uncertain stochastic BAM neural networks with interval time-varying delays[J]. Cognitive Neurodynamics, 2012, 6(5):443-458. [7] CHENG J, ZHU H, ZHONG S, et al. Novel delay-dependent robust stability criteria for neutral systems with mixed time-varying delays and nonlinear perturbations[J]. Applied Mathematics and Computation, 2013, 14(15):7741-7753. [8] LEE W, LEE S, PARK P. Improved criteria on robust stability and H∞ performance for linear systems with interval time-varying delays via new triple integral functionals[J]. Applied Mathematics and Computation, 2014, 243(15):570-577. [9] YU J. Novel delay-dependent stability criteria for stochastic systems with time-varying interval delay[J]. International Journal of Control, Automation and Systems, 2012, 10(1):197-202. [10] HUA M, DENG F, LIU X, et al. Robust delay-dependent exponential stability of uncertain stochastic system with time-varying delay[J]. Circuits, Systems and Signal Processing, 2010, 29(3):515-526. [11] ZHANG H, YAN H, CHEN Q. Stability and dissipative analysis for a class of stochastic system with time-delay[J]. Journal of the Franklin Institute, 2010, 347(5):882-893. [12] LIU M, HO D, NIU Y. Robust filtering design for stochastic system with mode-dependent output quantization[J]. IEEE Transactions on Signal Processing, 2010, 58(12):6410-6416. [13] ZHANG Y, HE Y, WU M. Delay-dependent robust stability for uncertain stochastic systems with interval time-varying delay[J]. Acta Atomatica Sinica, 2009, 35(5):577-582. [14] DRAGAN V, MOROZAN T, STOICA A. Robust stabilization of linear stochastic systems[J]. Mathematical Methods in Robust Control of Linear Stochastic Systems, 2013, 52:381-436. [15] XIA J, SUN C, ZHANG B. New robust H∞ Control for uncertain stochastic Markovian jumping systems with mixed delays based on decoupling method[J]. Journal of the Franklin Institute, 2012, 349(3):741-769. [16] YANG H, ZHANG H, SHI H, et al. Robust H∞ fitering for uncertain nonlinear stochastic systems with mode-dependent time-delays and markovian jump parameters[J]. Circuits, Systems and Signal Processing, 2011, 30(2):303-321. [17] ZHANG Y, WU A, DUAN G. Improved L2-L∞ filtering for stochastic time-delay systems[J]. Internatiomal Journal of Control, Automation and Systems, 2010, 8(4):741-747. [18] BASIN M, RODKINA A. On delay-dependent stability for a class of nonlinear stochastic systems with multiple state delays[J]. Nonlinear Analysis: Theory Methods and Applications, 2008, 68(8):2147-2157. [19] CHEN W, GUAN Z, LU X. Delay-dependent exponential stability of uncertain stochastic systems with multiple delays: An LMI approach[J]. Systems and Control Letters, 2005, 54(6):547-555. [20] BALASUBRAMANIAN P, KRISHNASNMY R, BKKIYAPPAN R. Delay-interval-dependent robust stability results for uncertain stochastic systems with Markovian jumping parameters[J]. Nonlinear Analysis: Hybrid Systems, 2011, 5(4):681-691. [21] LI T, GUO L, LIN C. A new criterion of delay-dependent stability for uncertain time-delay systems[J]. IET Control Theory and Application, 2007, 1(3):611-616. [22] WANG C, SHEN Y. Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time varying delay[J]. IET Control Theory and Application, 2012, 6(7):875-883. |
[1] | 邢国靖,张承慧*,赵辉宏. 带乘性噪声和测量时滞的随机系统二次滤波[J]. 山东大学学报(工学版), 2011, 41(6): 50-58. |
[2] | 王岩青,钱承山,姜长生 . 中立型不确定变时滞系统的一个时滞相关鲁棒稳定性判据[J]. 山东大学学报(工学版), 2008, 38(1): 116-120 . |
[3] | 方炜, , 姜长生, , 钱承山 . 一类非线性不确定时滞系统的模糊跟踪控制[J]. 山东大学学报(工学版), 2007, 37(5): 47-52 . |
[4] | 贾秀芹,刘允刚 . 非线性系统的 H∞部分状态观测器设计[J]. 山东大学学报(工学版), 2007, 37(5): 40-46 . |
[5] | 牛新生,叶华,王亮 . 不确定非线性离散时滞系统的可靠保成本控制[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 . |
[6] | 谢楠 . 不确定非线性离散时滞系统的可靠保成本控制[J]. 山东大学学报(工学版), 2007, 37(4): 28-33 . |
|