您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 26-31.doi: 10.6040/j.issn.1672-3961.0.2017.538

• 机器学习与数据挖掘 • 上一篇    下一篇

适应源荷不确定性的参考电网区间优化方法

孙东磊1,李山1,李雪亮1,韩学山2,3,李文博4,杨思1   

  1. 1. 国网山东省电力公司经济技术研究院, 山东 济南 250021;2. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061; 3. 全球能源互联网(山东)协同创新中心, 山东 济南 250061;4. 国网山东省电力公司电力科学研究院, 山东 济南 250002
  • 收稿日期:2017-09-12 出版日期:2017-12-20 发布日期:2017-09-12
  • 作者简介:孙东磊(1988— ),男,山东济宁人,工程师,博士,主要研究方向为电力系统源网协同理论研究与工程应用技术开发. E-mail: sdusdlei@sina.com
  • 基金资助:
    国家自然科学基金资助项目(51477091);国家重点基础研究发展计划资助项目(973计划)(2013CB228205);国家电网公司科技资助项目(SGSDDK00KJJS1600061)

Interval optimization method for reference network adaptable to the uncertainties of power sources and electric loads

SUN Donglei1, LI Shan1, LI Xueliang1, HAN Xueshan2,3, LI Wenbo4, YANG Si1   

  1. 1. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    3. Collaborative Innovation Center for Global Energy Internet(Shandong), Jinan 250061, Shandong, China;
    4. State Grid Shandong Electric Power Research Institute, Jinan 250002, Shandong, China
  • Received:2017-09-12 Online:2017-12-20 Published:2017-09-12

摘要: 针对现有电网评估模型未考虑源荷不确定性情形以及并未关联电网响应不确定性的运行策略的不足,提出适应源荷不确定性的参考电网区间优化方法,为实现柔性电网规划提供理论参考。基于规划周期内不确定电源、负荷预测区间和规划网络候选方案,充分关联电网运行策略,构建以追求电网的发电成本、备用配置成本和输电网络投资成本总和最小为目标,以不确定性背景下电网各种工况运行安全域为约束条件的参考电网区间优化模型,并给出模型求解方法,得到支撑源荷功率平衡的电网优化方案。通过算例分析说明了所提方法的有效性。

关键词: 参考电网, 柔性电网规划, 电网运行策略, 电网评估, 区间优化

Abstract: Aimed at the shortage of the existing reference network models that rarely take the uncertainties of power sources and electric loads as well as the operation strategies of responding uncertainties into consideration, an interval optimization method for reference network adaptable to the uncertainties of power sources and electric loads was proposed to provide theoretical guidance for flexible electric network planning. Based on the forecasted interval level of uncertain power sources and electric loads in the planning period and candidate schemes in network planning strategy, a novel interval optimization model for reference network was built to minimize the total generation cost, reserve allocation cost and transmission investment cost, in which the security region constraints under all operating modes should be respected. The solution method was given for the proposed model to get the optimal planning scheme for electric network. Finally, case studies were conducted to demonstrate the effectiveness of the proposed method.

Key words: reference network, interval optimization, flexible electric network planning, power grid evaluation, electric network operation strategy

中图分类号: 

  • TM315
[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015.
[2] ELA E, O'MALLEY M. Studying the variability and uncertainty impacts of variable generation at multiple timescales[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1324-1333.
[3] 刘晓明, 牛新生, 张怡, 等. 基于 NASA 观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46(4): 111-116. LIU Xiaoming, NIU Xinsheng, ZHANG Yi, et al. Analysis of spatial and temporal distribution of wind power output and variation characteristics based on NASA observation data [J]. Journal of Shandong University(Engineering Science), 2016, 46(4): 111-116.
[4] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J].中国电机工程学报, 2014, 34(29): 5029-5040. XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029-5040.
[5] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147-158. LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13):147-158.
[6] 李山. 参考电网建模及优化方法研究[D]. 济南: 山东大学, 2017. LI Shan. Research on modeling and optimization methods of reference network[D]. Jinan: Shandong University, 2017.
[7] MINOIA A. Reference transmission network: a game theory approach[J]. IEEE Transactions on Power Systems, 2006, 21(1): 249-259.
[8] PADHY N P, ROHIT B, MAYANK N. Smart reference networks[C] //2011 IEEE Power and Energy Society General Meeting. Detroit, USA: IEEE Press, 2011.
[9] CALIBJO C C, ALLAN C N. Reference grid performance assessment model for transmission company regulation[C] //IEEE Conference on Power & Energy(IPEC). Ho Chi Minh City, Vietnam: IEEE Press, 2012.
[10] 徐伟, 鲍颜红, 周海锋, 等. 基于阻塞分析的输电线路动态增容[J]. 电力系统保护与控制, 2016, 44(6): 15-22. XU Wei, BAO Yanhong, ZHOU Haifeng, et al. Transmission line dynamic capacity-increase based on congestion analysis[J]. Power System Protection and Control, 2016, 44(6): 15-22.
[11] WANG Y, XIA Q, KANG C. Unit commitment with volatile node injections by using interval optimization[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1705-1713.
[12] ZHAO J, ZHENG T, LITVINOV E. Variable resource dispatch through do-not-exceed limit[J]. IEEE Transactions on Power Systems, 2015, 30(2): 820-828.
[13] 杨明, 程凤璐, 韩学山. 电力系统实时调度的有效静态安全域法[J]. 中国电机工程学报, 2015, 35(6): 1353-1362. YANG Ming, CHENG Fenglu, HAN Xueshan. Real-time dispatch based on effective steady-state security regions of power system[J]. Proceedings of the CSEE, 2015, 35(6): 1353-1362.
[14] JABR R A, KARAKI S, KORBANE J A. Robust multi-period OPF with storage and renewables[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2790-2799.
[15] 孙东磊. 电力系统源、网协同调度的理论研究[D]. 济南: 山东大学, 2016. SUN Donglei. Theoretical studies on synergistic dispatch of power source and electric network in power system[D]. Jinan: Shandong University, 2016.
[16] KWON J, HEDMAN K W. Transmission expansion planning model considering conductor thermal dynamics and high temperature low sag conductors[J]. IET Generation Transmission & Distribution, 2015, 9(15):2311-2318.
[17] AMIN K, SHAHIDEHPOUR M, KAMALINIA S. Transmission switching in expansion planning[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1722-1733.
[18] VILLUMSEN A, CHRISTOFFER J, BRONMO G, et al. Line capacity expansion and transmission switching in power systems with large-scale wind power[J]. IEEE Transactions on Power Systems, 2013, 28(2): 731-739.
[19] 孙东磊, 韩学山, 张波. 电力系统运行协同的区间有功优化潮流[J]. 电力自动化设备, 2016, 36(1): 97-104. SUN Donglei, HAN Xueshan, ZHANG Bo. Synergetic interval optimal active power flow of power system operation [J]. Electric Power Automation Equipment, 2016, 36(1): 97-104.
[20] ZIMMERMAN R D, MURILLO-SÁNCHEZ C E, GAN D D. MATPOWER: a MATLAB power system simulation package[EB/OL]. 1997[2017-06-05]. http://www.pserc.cornell. edu/matpower/.
[1] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[2] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[3] 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156.
[4] 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133.
[5] 李静立,王谦,张军,李磊磊. 基于阶次分析的风电机组在线模态参数识别与故障诊断[J]. 山东大学学报(工学版), 2017, 47(4): 96-102.
[6] 谢才科,姜自民,刘玉田,王春义. 海上风电机组低电压穿越远端检测[J]. 山东大学学报(工学版), 2017, 47(4): 110-116.
[7] 刘晓明,牛新生,张怡,曹本庆,施啸寒,张友泉,张杰,安鹏,汪湲. 基于NASA观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46(4): 111-116.
[8] 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102.
[9] 赵伟国,姜自民,刘玉田,王春义. 海上风电机组谐波适应性远端检测[J]. 山东大学学报(工学版), 2016, 46(4): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!