您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 20-25.doi: 10.6040/j.issn.1672-3961.0.2017.505

• • 上一篇    下一篇

基于集中式信息系统的主动配电网鲁棒优化调度

褚晓东1,2,唐茂森1,2,高旭2,刘伟生3,贾善杰3,李笋3   

  1. 1. 全球能源互联网(山东)协同创新中心, 山东 济南 250061;2. 山东大学电气工程学院, 山东 济南 250061; 3. 国网山东省电力公司, 山东 济南 250003
  • 收稿日期:2017-10-19 出版日期:2017-12-20 发布日期:2017-10-19
  • 作者简介:褚晓东(1978— ),女,山东济南人,副教授,博士,主要研究方向为电力系统稳定分析与控制、能源物理—信息系统建模与仿真等. E-mail: chuxd@sdu.edu.cn
  • 基金资助:
    国家电网公司科技资助项目(SGSDDK00KJJS1600061)

Robust optimal dispatch of active distribution networks based on centralized information system

CHU Xiaodong1,2, TANG Maosen1,2, GAO Xu2, LIU Weisheng3, JIA Shanjie3, LI Sun3   

  1. 1. Collaborative Innovation Center for Global Energy Interconnection(Shandong), Jinan 250061, Shandong, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. State Grid Shandong Electric Power Company, Jinan 250003, Shandong, China
  • Received:2017-10-19 Online:2017-12-20 Published:2017-10-19

摘要: 为了适应配电网从被动受电向主动供电角色的转化,提出基于集中式信息系统的主动配电网鲁棒优化调度策略。采用交流潮流模型描述配电网的功率平衡关系,计及无功注入的调节作用,建立两阶段电能与备用联合调度模型;应用鲁棒优化技术,构建可再生能源发电出力的不确定性集合;将高维、非凸的最优化问题转化为凸问题,以保证最优解的性能。对算例系统进行仿真计算,结果表明资源的优化调度提高主动配电网的灵活性,所提出的鲁棒优化调度策略能够增强主动配电网对间歇性可再生能源发电的容纳能力。

关键词: 凸松弛, 信息系统, 不确定性, 优化调度, 鲁棒优化, 主动配电网

Abstract: To be adpaptable to the evolving role of distribution power networks from the passive power consumption to active power supply, a robust optimal scheduling strategy was proposed for active distribution networks based on centralized information system. The AC power flow model was used to describe the power balance of a distribution network accounting for the impact of adjustment of the reactive power injection. A two-stage joint energy and reserve scheduling model was built. The uncertainty set of the renewable power outputs was constructed by using the roboust optimization technique. The optimization problem of high dimension and nonconvexity was transformed into convex problem to ensure the optimal solution performance. Simulation results of a test system showed that a substantial increase of flexibility was achieved through the optimal dispatch of various resources. The proposed robust optimal schedule strategy could enhance the capability of active distribution networks to integrate intermittent renewable generation.

Key words: active distribution network, optimal dispatch, information system, convex relaxation, uncertainty, robust optimization

中图分类号: 

  • TM73
[1] NELSON J, JOHNSTON J, MILEVA A, et al. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures[J]. Energy Policy, 2012, 43(4):436-447.
[2] CARRASCO J M, FRANQUELO L G, BIALASIEWICZ J T, et al. Power-electronic systems for the grid integration of renewable energy sources: a survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4):1002-1016.
[3] 吴文传, 张伯明, 巨云涛. 主动配电网网络分析与运行调控[M]. 北京:科学出版社, 2016.
[4] SOROUDI A, SIANO P, KEANE A. Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty[J]. IEEE Transactions on Smart Grid, 2016, 7(1):261-272.
[5] SEDGHI M, AHMADIAN A, ALIAKBAR-GOLKAR M. Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation[J]. IEEE Transactions on Power Systems, 2016, 31(1):304-316.
[6] BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge, UK:Cambridge University Press, 2004.
[7] CANDÈS E J, TAO T. The power of convex relaxation: Near-optimal matrix completion[J]. IEEE Transactions on Information Theory, 2010, 56(5):2053-2080.
[8] WANG Q, GUAN Y, WANG J. A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output[J]. IEEE Transactions on Power Systems, 2012, 27(1):206-215.
[9] BERTSIMAS D, LITVINOV E, SUN X A, et al. Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2013, 28(1):52-63.
[10] YAN Y, QIAN Y, SHARIF H, et al. A survey on smart grid communication infrastructures: motivations, requirements and challenges[J]. IEEE Communications Surveys & Tutorials, 2013, 15(1): 5-20.
[11] MARTINS V F, BORGES C L T. Active distribution network integrated planning incorporating distributed generation and load response uncertainties[J]. IEEE Transactions on Power Systems, 2011, 26(4):2164-2172.
[12] SODER L. Reserve margin planning in a wind-hydro-thermal power system[J]. IEEE Transactions on Power Systems, 1993, 8(2):564-571.
[13] DOOSTIZADEH M, GHASEMI H. Day-ahead scheduling of an active distribution network considering energy and reserve markets[J]. International Transactions on Electrical Energy Systems, 2013, 23(7):930-945.
[14] BIGNUCOLO F, CALDON R, PRANDONI V. Radial MV networks voltage regulation with distribution management system coordinated controller[J]. Electric Power Systems Research, 2008, 78(4): 634-645.
[15] MCDONALD J. Adaptive intelligent power systems: Active distribution networks[J]. Energy Policy, 2008, 36(12): 4346-4351.
[16] LAVAEI J, LOW S H. Zero duality gap in optimal power flow problem[J]. IEEE Transactions on Power Systems, 2012, 27(1):92-107.
[17] LAVORATO M, FRANCO J F, RIDER M J, et al. Imposing radiality constraints in distribution system optimization problems[J]. IEEE Transactions on Power Systems, 2012, 27(1):172-180.
[1] 崔恒斌,周瑾,董继勇,金超武. V-Gap度量磁悬浮推力轴承系统H控制器设计[J]. 山东大学学报(工学版), 2018, 48(2): 86-93.
[2] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 2015, 45(5): 22-28.
[3] 张慧慧, 夏建伟. 不确定随机多时滞系统鲁棒随机稳定性分析[J]. 山东大学学报(工学版), 2015, 45(1): 54-63.
[4] 付仲良,周凡,逯跃锋. 基于GIS技术的电网应急态势标绘[J]. 山东大学学报(工学版), 2013, 43(4): 1-6.
[5] 陈玉明,吴克寿,谢荣生. 基于相对知识粒度的决策表约简[J]. 山东大学学报(工学版), 2012, 42(6): 8-12.
[6] 杨习贝1,2,黄佳玲1,周君仪3,杨静宇2. 不完备系统中基于特征相容块的粗糙集[J]. 山东大学学报(工学版), 2012, 42(5): 1-6.
[7] 翟俊海,高原原,王熙照,陈俊芬. 基于划分子集的属性约简算法[J]. 山东大学学报(工学版), 2011, 41(4): 24-28.
[8] 贠汝安1,2,董增川1,王好芳2. 基于NSGA2的水库多目标优化[J]. 山东大学学报(工学版), 2010, 40(6): 124-128.
[9] 赵文忠 史军. 复功率注入空间的电力系统概率安全性指标研究[J]. 山东大学学报(工学版), 2009, 39(6): 135-138.
[10] 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!