您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 7-12.doi: 10.6040/j.issn.1672-3961.0.2017.530

• • 上一篇    下一篇

计及空间关联冗余的节点负荷预测方法

韩学山1,王俊雄1,孙东磊2,李文博3,张心怡4,韦志清5   

  1. 1. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;2. 国网山东省电力公司经济技术研究院, 山东 济南 250021;3. 国网山东省电力公司电力科学研究院, 山东 济南 250003;4. 国网青岛供电公司, 山东 青岛 266002;5. 国网烟台供电公司, 山东 烟台 264001
  • 收稿日期:2017-09-21 出版日期:2017-12-20 发布日期:2017-09-21
  • 作者简介:韩学山(1959— ),男,辽宁大连人,教授,博士,主要研究方向为电力系统分析与控制. E-mail:xshan@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51477091);国家重点基础研究发展计划资助项目(973计划)(2013CB228205);国家电网公司科技资助项目(SGSDDK00KJJS1600061)

Nodal load forecasting method considering spatial correlation and redundancy

HAN Xueshan1, WANG Junxiong1, SUN Donglei2, LI Wenbo3, ZHANG Xinyi4, WEI Zhiqing5   

  1. 1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    2. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    3. Electric Power Research Institute, State Grid Shandong Electric Power Company, Jinan 250003, Shandong, China;
    4. State Grid Qingdao Power Supply Company, Qingdao 266002, Shandong, China;
    5. State Grid Yantai Power Supply Company, Yantai 264001, Shandong, China
  • Received:2017-09-21 Online:2017-12-20 Published:2017-09-21

摘要: 针对现有节点负荷预测方法对节点空间关联信息没有有效利用的问题,提出计及空间关联冗余的带有估计校正特性的节点负荷预测方法。分析量测信息在时间维度和空间维度上的关联关系,以及二者有机结合的空间关联、冗余的特性,给出二者相互校正的预测原理。对状态量和量测值之间的两种空间关联关系进行深入分析,充分寻求在空间关联拓扑上能间接表征状态量特征的多组量测值方程。依据分析结果建立计及空间关联冗余的预测模型,给出以支持向量机为前期预测模型的预测方法,并对预测方法的优点进行分析。试验结果表明:考虑空间关联冗余的节点负荷预测方法相对于支持向量机模型预测误差明显降低,有利于改善预测结果。

关键词: 节点负荷预测, 冗余信息, 状态估计, 空间关联, 支持向量机

Abstract: Aiming at the problem that existing nodal load forecasting methods had no effective use for the nodes spatial correlation information, a new nodal load forecasting method with estimated correction characteristic was proposed, which had considered spatial correlation and redundancy. The correlation between the time dimension and the spatial dimension of the measurement information, and the spatial correlation and redundancy characteristics which combined these two dimensions were analyzed, and the mutual correction prediction principle was given. Two spatial correlations between state and measured values were analyzed deeply to establish measuring equations, which could characterise state features indirectly on the spatial correlation topology. Based on the analysis results, the forecasting model was established, and the forecasting method in which pre-prediction model was support vector machine was given, and advantages of the forecasting method were elaborated. Case studies demonstrated that compared with SVM model, the proposed 山 东 大 学 学 报 (工 学 版)第47卷 - 第6期韩学山,等:计及空间关联冗余的节点负荷预测方法 \=-method could effectively decrease forecasting errors and improve forecasting results.

Key words: support vector machine, redundant information, spatial correlation, state estimation, nodal load forecasting

中图分类号: 

  • TM315
[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2007.
[2] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社, 2015.
[3] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14):3482-3494. TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494.
[4] 王蓓蓓, 李义荣, 李扬, 等. 考虑响应不确定性的可中断负荷参与系统备用配置的协调优化[J]. 电力自动化设备,2015, 35(11):82-89. WANG Beibei, LI Yirong, LI Yang, et al. Optimal coordination between system reserve and interruptible loads with response uncertainty[J]. Electric Power Automation Equipment, 2015, 35(11):82-89.
[5] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20):22-29. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20):23-29.
[6] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29):5029-5040. XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29):5029-5040.
[7] 叶瑰昀, 罗耀华, 刘勇, 等. 基于ARMA模型的电力系统负荷预测方法研究[J]. 信息技术, 2002(6):74-76. YE Guiyun, LUO Yaohua, LIU Yong, et al. Research on method of power system load forecasting based on ARMA model[J]. Information Technology, 2002(6):74-76.
[8] 李明干, 孙健利, 刘沛. 基于卡尔曼滤波的电力系统短期负荷预测[J]. 继电器, 2006, 32(4):9-12. LI Minggan, SUN Jianli, LIU Pei. Short-term load forecast of power system based on Kalman filter[J]. Relay, 2006, 32(4):9-12.
[9] DANESIIDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural network with fuzzy set-based classification for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(4):1386-1391.
[10] 周佃民, 管晓宏, 孙婕, 等. 基于神经网络的电力系统短期负荷预测研究[J]. 电网技术, 2002, 26(2):10-13. ZHOU Dianmin, GUAN Xiaohong, SUN Jie, et al. A short-term load forecasting system based on BP artificial neural network[J]. Power System Technology, 2002, 26(2):10-13.
[11] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6):55-59. LI Yuancheng, FANG Tingjian,YU Erkeng. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6):55-59.
[12] 朱六璋, 袁林, 黄太贵. 短期负荷预测的实用数据挖掘模型[J]. 电力系统自动化, 2004, 28(3):49-52. ZHU Liuzhang, YUAN Lin, HUANG Taigui. Applied data mining models for short-term load forecasting[J]. Automation of Electric Power Systems, 2004, 28(3):49-52.
[13] 牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26(18):6-12. NIU Dongxiao, GU Zhihong, XING Mian, et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26(18):6-12.
[14] ABU-EL-MAGD M A, SINIIA N K. Two new algorithms for on-line modelling and forecasting of the load demand of a multinode power system[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7):3246-3253.
[15] ABU-EL-MAGD M A, SINIIA N K. Univariate and multivariate time series techniques for modeling and forecasting short-term load demand[C] // IFAC Symposium on Theory and Application of Digital Control. New Delhi, India: IFAC Press, 1982: 329-334.
[16] 韩力, 韩学山, 贠志皓, 等. 多节点超短期负荷预测方法[J]. 电力系统自动化, 2007, 31(21):30-34. HAN Li, HAN Xueshan, YUN Zhihao, et al. Method for ultra-short term multi-node load forecasting[J]. Automation of Electric Power Systems, 2007, 31(21):30-34.
[17] 潘志远, 韩学山. 电网节点负荷的立体化预测方法[J]. 电力系统自动化, 2012, 36(21):47-52. PAN Zhiyuan, HAN Xueshan. A multi-dimensional method of nodal load forecasting in power grid[J]. Automation of Electric Power Systems, 2012, 36(21):47-52.
[18] 牟涛, 康重庆, 夏清, 等. 电力系统多级负荷预测及其协调问题:(三)关联协调模型[J]. 电力系统自动化,2008, 32(9):20-24. MU Tao, KANG Chongqing, XIA Qing, et al. Power system multilevel load forecasting and coordinating: Part three correlative coordinating model[J]. Automation of Electric Power Systems, 2008, 32(9):20-24.
[19] 薛禹胜, 陈宁, 王树民, 等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化, 2017, 41(10):161-169. XUE Yusheng, CHEN Ning, WANG Shumin, et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10):161-169.
[20] 张林, 刘先珊, 阴和俊. 基于时间序列的支持向量机在负荷预测中的应用[J]. 电网技术, 2004, 28(19):38-41. ZHANG Lin, LIU Xianshan, YIN Hejun. Application of support vector machines based on time sequence in power system load forecasting[J]. Power System Technology, 2004, 28(10):38-41.
[1] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[2] 赵英弘,何潇,周东华. 一类含有传感器故障的网络化系统容错估计[J]. 山东大学学报(工学版), 2017, 47(5): 71-78.
[3] 刘岩,李幼军,陈萌. 基于EMD和SVM的抑郁症静息态脑电信号分类研究[J]. 山东大学学报(工学版), 2017, 47(3): 21-26.
[4] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[5] 孙一冰,付敏跃,王炳昌,张焕水. 大规模动态系统的分布式状态估计算法[J]. 山东大学学报(工学版), 2016, 46(6): 62-68.
[6] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[7] 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26.
[8] 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18.
[9] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[10] 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33.
[11] 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56.
[12] 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11.
[13] 兰义华,任浩征*,张勇,赵雪峰. 一种基于“当前”模型的改进卡尔曼滤波算法[J]. 山东大学学报(工学版), 2012, 42(5): 12-17.
[14] 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18.
[15] 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!