您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 110-116.doi: 10.6040/j.issn.1672-3961.0.2016.218

• • 上一篇    下一篇

海上风电机组低电压穿越远端检测

谢才科1,姜自民1,刘玉田1*,王春义2   

  1. 1. 山东大学电气工程学院, 山东 济南 250061;2. 国网山东省电力公司, 山东 济南 250001
  • 收稿日期:2016-06-13 出版日期:2017-08-20 发布日期:2016-06-13
  • 通讯作者: 刘玉田(1964— ),男,山东青州人,教授,博导,博士,主要研究方向为电力系统运行与控制. E-mail:liuyt@sdu.edu.cn E-mail:lavasly@126.com.
  • 作者简介:谢才科(1988— ),男,贵州安顺人,硕士研究生,主要研究方向为新能源并网. E-mail:lavasly@126.com.
  • 基金资助:
    国家科技支撑计划资助项目(2015BAA07B01)

Remote testing on low voltage ride through of offshore wind turbines

XIE Caike1, JIANG Ziming1, LIU Yutian1*, WANG Chunyi2   

  1. 1. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China
  • Received:2016-06-13 Online:2017-08-20 Published:2016-06-13

摘要: 为解决长距离输电海缆对海上风电机组低电压穿越远端检测的影响问题,根据基于风力发电机出口端发展和制定的低电压穿越(LVRT)测试技术和标准,建立了低电压穿越分析模型,提出海上风电机组低电压穿越远端检测方法。按照现有检测方法分析了稳态、暂态情况下远端检测和近端检测的区别,得出远端检测中导致风机切机的外部原因为限流电抗与输电海缆的相互影响使机端电压升高、暂态过程延长、机端电压谐波含量增加。提出利用电力电子开关替代传统检测设备中的断路器,以便能精确控制电抗的动作时间。改进阻抗的动作时序,使短路电抗和限流电抗投入或退出电路的时间间隔最短,以避免限流电抗与输电海缆的相互作用对远端检测的影响。仿真验证了改进检测方法的有效性,为远端检测设备的研制提供了借鉴。

关键词: 远端检测, 海缆, 低电压穿越, 动作时序, 海上风力发电机, 限流电抗

Abstract: In order to cope with the long-distance submarine cable effects on low voltage ride through(LVRT)remote testing for offshore wind turbines(WTs), the LVRT testing model was built and the method for remote testing on LVRT of offshore WTs was proposed according to the existing LVRT testing technique and standards based on the outlet of WTs. The difference between near and remote testing in both steady and transient situations was analyzed according to the existing devices and method, which concluded that the mutual influence of current limiting reactance and cable heightened the voltage of the outlet, prolonged the transient process and increased harmonic component. The circuit breaker of original device was replaced with electronic switches in order to control the operation of reactance accurately. The operation sequence of the reactance was improved to make the action intervals of time between the current-limiting reactance and short-circuit reactance trended to 0. By doing this, the mutual influence of current-limiting reactance and cable could be avoided. A simulation was put forth to verify the effectiveness of the improved process and to provide supports for development of remote LVRT testing equipment at the same time.

Key words: offshore wind turbines, submarine cable, limiting reactance, remote testing, LVRT, operation sequcence

中图分类号: 

  • TM315
[1] TSILI M, PAPATHANASSIOU S. A review of grid code technical requirements for wind farms[J]. IET Renewable Power Generation, 2009, 3(3): 308-332.
[2] 王锡凡,卫晓辉,宁联辉,等.海上风电并网与输送方案比较[J]. 中国电机工程学报,2014,34(31): 5459-5466. WANG Xifan, WEI Xiaohui, NING Lianhui, et al. Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31):5459-5466.
[3] SERRANO G, JBURGOS P M, RIQUELME S J. A new and efficient method for optimal design of large offshore wind power plants[J]. IEEE Transactions on Power Systems, 2013, 28(3):3075-3084
[4] ACKERMANN T. Transmission systems for offshore wind farms[J]. IEEE Power Engineering Review, 2002, 22(12): 23-27.
[5] 赵伟国,姜自民,刘玉田,等. 海上风电就在谐波适应性远端检测[J].山东大学学报(工学版), 2016, 46(4):125-130. ZHAO Weiguo, JIANG Zimin, LIU Yutian, et al. Remote testing on harmonic adaptability of offshore wind turbines[J]. Journal of Shandong Unibersity(Engineering Science), 2016, 46(4):125-130.
[6] JIANG Z M, KUMAR M, LIU Y T. A grid adaptability test method eliminating cable impacts for offshore wind turbines[C] //2016 China International Conference on Electricity Distribution. Xi'an, China: IEEE Press, 2016:1-4.
[7] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 风电场接入电力系统技术规定:GB/Z 19963—2005[S]. 北京: 中国标准出版社, 2006.
[8] 国家电网公司. 风电场接入电网技术规定QIGDW392—2009[S]. 北京: 国家电网公司, 2009.
[9] 国家能源局. 风力发电机组低电压穿越能力测试规程:NB/T 31051—2014[S]. 北京:国家能源局, 2014.
[10] ZENG H, ZHU Y, LIU J S. Verification of DFIG and PMSG wind turbines' LVRT characteristics through field testing[C] //IEEE International Conference on Power System Technology. Auckland, New Zealand: IEEE Press, 2012:1-6.
[11] XIE C K, ZHAO W G, LIU Y T. Remote detecting low voltage ride through ability of DFIG[C] //TENCON 2015-2015 IEEE Region 10 Conference. Hongkong, China: IEEE Press, 2015:1-4.
[12] 宋海涛. 低电压穿越(LVRT)测试装置的研制[D]. 北京:北京交通大学, 2011. SONG Haitao. Development of low voltage ride through testing device[D]. Beijing: Beijing Jiaotong University, 2011.
[13] 杨淑英, 张兴, 张崇巍, 等. 电压跌落激起的双馈型风力发电机电磁过渡过程[J]. 电力系统自动化, 2008, 32(19):85-91. YANG Shuying, ZHANG Xing, ZHANG Chongwei, et al. Electromagnetic transient process of doubly fed induction generator driven by voltage sag[J]. Automation of Electric Power Systems, 2008, 32(19):85-91.
[14] 赵静. 双馈异步风力发电机低电压穿越时的Crowbar保护技术[D]. 杭州:浙江大学, 2010. ZHAO Jing. Crowbar protection technique for low voltage ride through of doubly fed induction generators[D]. Hangzhou: Zhejiang University, 2010.
[15] ZUBIAGA M, ABAD G, BARRENA J A, et al. Spectral analysis of a transmission system based on AC submarine cables for an offshore wind farm[J]. IEEE Industrial Electronics Society, 2009:807-812.
[16] FORTMANN J, CAI L, ENGELHARDT S, et al. Wind turbine modeling, LVRT field test and certification[C] //2011 IEEE Power and Energy Society General Meeting. Michigan, USA: IEEE Press, 2011:1-7.
[17] XU L, WANG Y. Dynamic modeling and control of DFIG-based wind turbines under unbalanced netword conditions[J]. IEEE Transactions on Power Systems, 2007, 22(1):314-323.
[18] 徐海亮,章玮,贺益康,等. 双馈风电机组低电压穿越技术要点及展望[J].电力系统自动化,2013, 37(20):8-15. XU Hailiang, ZHANG Wei, HE Yikang, et al. A review on low voltage ride-through technologies and prospect for DFIG wind turbines[J]. Automation of Electric Power Systems, 2013, 37(20):8-15.
[19] 张学广, 徐殿国. 电网对称故障下基于active crowbar双馈发电机控制[J]. 电机与控制学报, 2009, 13(1): 99-103. ZHANG Xueguang, XU Dianguo. Control of doubly fed generator based on active crowbar under symmetrical faults[J]. Electric Machines and Control, 2009, 13(1): 99-103.
[20] 欧阳金鑫, 熊小伏, 张涵轶. 电网短路时并网双馈风电机组的特性研究[J]. 中国电机工程学报, 2011, 31(22): 17-25. OUYANG Jinxin, XIONG Xiaofu, ZHANG Hanyi. Research on characteristics of grid connected doubly fed induction generator in short circuit[J]. Proceedings of the CSEE, 2011, 31(22):17-25.
[21] XU L, WANG Y. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions [J]. IEEE Transactions on Power Systems, 2007, 22(1):314-323.
[22] 胡家兵, 贺益康, 郭晓明, 等. 不平衡电压下双馈异步风力发电系统的建模与控制[J]. 电力系统自动化, 2007, 31(14):47-56. HU Jiabing, HE Yikang, GUO Xiaoming, et al. Modeling and control of doubly fed asynchronous wind power generation system under unbalanced voltage[J]. Automation of Electric Power Systems, 2007, 31(14):47-56.
[23] 严干贵, 王茂春, 穆钢, 等. 双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J]. 电工技术学报, 2008, 23(7): 98-104. YAN Gangui, WANG Maochun, MU Gang, et al. Modeling of grid-connected doubly-fed induction generator for reactive power static regulation capacity study [J]. Transactions of China Electrotechnical Society, 2008, 23(7):98-104.
[24] 马文龙. Crowbar保护在双馈异步风力发电系统电网故障穿越中的应用[J]. 电力自动化设备, 2011, 31(7):127-130. MA Wenlong. Application of crowbar circuit in grid fault riding through of doubly-fed induction wind power generation system[J]. Electric Power Automation Equipment, 2011, 31(7):127-130.
[25] LUNA A, LIMA F K A, SANTOS D, et al. Simplified modeling of a DFIG for transient studies in wind power applications[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1):9-20.
[1] 赵伟国,姜自民,刘玉田,王春义. 海上风电机组谐波适应性远端检测[J]. 山东大学学报(工学版), 2016, 46(4): 125-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!