您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 125-130.doi: 10.6040/j.issn.1672-3961.0.2016.219

• • 上一篇    

海上风电机组谐波适应性远端检测

赵伟国1,姜自民1,刘玉田1*,王春义2   

  1. 1. 山东大学电气工程学院, 山东 济南 250061;2.国网山东省电力公司, 山东 济南 250001
  • 收稿日期:2016-06-13 出版日期:2016-08-20 发布日期:2016-06-13
  • 通讯作者: 刘玉田(1964— ),男,山东青州人,教授,博导,博士,主要研究方向为电力系统运行与控制.E-mail:liuyt@sdu.edu.cn E-mail:zhao-wei-guo@163.com
  • 作者简介:赵伟国(1990— ),男,安徽亳州人,硕士研究生,主要研究方向为新能源发电.E-mail: zhao-wei-guo@163.com
  • 基金资助:
    国家科技支撑计划资助项目(2015BAA07B01)

Remote testing on harmonic adaptability of offshore wind turbines

ZHAO Weiguo1, JIANG Zimin1, LIU Yutian1*, WANG Chunyi2   

  1. 1.School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China
  • Received:2016-06-13 Online:2016-08-20 Published:2016-06-13

摘要: 重点分析长距离电缆对谐波适应性测试的影响,以空载条件为基准提出基于电缆分布参数模型的海上风电机组谐波适应性远端检测方法。在双馈风机并网负载条件下,分别比较不同电缆长度和电容参数对风机谐振特性的影响。提出风机和风电场层面复合滤波的方法通过在风电机组逆变侧设计并配置LCL有源阻尼滤波器抑制高次谐波,并在公共连接点安装新型C型滤波器,为系统提供无功补偿的同时,消除谐振谐波,有效避免谐振。最后利用Simulink仿真,通过配置滤波器前后的谐波对比验证了所提方法的有效性。

关键词: 谐波适应性远端检测, LCL有源阻尼滤波器, C型滤波器, 海上风电机组, 电缆, 谐振

Abstract: The influence of long distance cable on harmonic adaptability test was analyzed, and the method for remote test on harmonic adaptability of offshore wind turbine was proposed in no-load condition based on the cable distribution parameter model. Based on double-fed induction generator(DFIG)system with load connected, the influences of different cable lengths and capacitance parameters on the resonant characteristics were compared. Wind turbine and wind farm composite filtering method was proposed. LCL active filter was designed to eliminate the high frequency harmonics of DFIG rectifier, and C-type filter at the point of common coupling(PCC)was applied to mitigate resonant harmonic, to provide reactive power as well. The simulation module was built in Simulink, and the proposed method was verified by the comparison of the harmonic without and with the designed filters.

Key words: offshore wind turbine, resonance, remote testing of harmonic adaptability, cable, C-type filter, LCL active filter

中图分类号: 

  • TM315
[1] ERLICH I, SHEWAREGA F, FELTES C, et al.Offshore wind power generation technologies[J].Proceedings of the IEEE, 2013, 101(4):891-905.
[2] SERRANO G J, BURGOS P M, RIQUELME S J. A new and efficient method for optimal design of large offshore wind power plants[J].IEEE Transactions on Power Systems, 2013, 28(3):3075-3084.
[3] 王锡凡,卫晓辉,宁联辉,等.海上风电并网与输送方案比较[J].中国电机工程学报,2014,34(31):5459-5466. WANG Xifan, WEI Xiaohui, NING Lianhui, et al.Integration techniques and transmission schemes for off-shore wind farms[J]. Proceedings of the CSEE, 2014, 34(31):5459-5466.
[4] CHAVEZ-BAEZ M V, ANAYA-LARA O, LO K L, et al. Review of harmonics in offshore wind farms[C] //2013 48th International Universities Power Engineering Conference. Dublin, Ireland: IEEE Press, 2013:1-5.
[5] PETERSSON A, THIRINGER T, HARNEFORS L, et al. Modeling and experimental verification of grid interaction of a DFIG wind turbine[J]. IEEE Transactions on Energy Conversion, 2006, 4(4):878-886.
[6] ZHI D, XU L. Direct power control of DFIG with constant switching frequency and improved transient performance[J]. IEEE Transactions on Energy Conversion, 2007, 22(1):110-118.
[7] EGEA-ALVAREZ A, BIANCHI F, JUNYENT-FERRE A, et al. Voltage control of multiterminal VSC-HVDC transmission systems for offshore wind power plants: design and implementation in a scaled platform[J]. IEEE Transactions on Industrial Electronics, 2013, 60(6):2381-2391.
[8] ZUBIAGA M, ABAD G, BARRENA J A, et al. Spectral analysis of a transmission system based on AC submarine cables for an offshore wind farm[C] //Industrial Electronics, 35th Annual Conference of IEEE. Porto, Portugal: IEEE Press, 2009:871-876.
[9] 周栾爱, 唐文左, 崔晓华,等. 电力电缆运行安全非线性模糊综合评判模型[J]. 山东大学学报(工学版), 2013(6):83-88. ZHOU Luanai, TANG Wenzuo, CUI Xiaohua, et al. Nomlinear fuzzy synthetic evaluation model for operating condition of power cables in tunnels[J]. Journal of Shandong University(Engineering Science), 2013(6):83-88.
[10] 樊熠,张金平,谢健,等. 风电场谐波谐振测试与分析[J]. 电力系统自动化,2016,40(2):147-151. FAN Yi, ZHANG Jinping, XIE Jian, et al. Testing and analysis for harmonic resonance of wind farm[J] , Automation of Electric Power Systems, 2016, 40(2):147-151.
[12] 米富丽. 直驱型风电系统谐波与谐振研究[D]. 哈尔滨:哈尔滨工业大学,2013. MI Fuli. Research on harmonics and reasonance for direct-drive wind power system[D]. Harbin: Harbin Institute of Technology, 2013.
[13] SHAO Z, SHUAI J, XI L, et al. Resonance issues and damping techniques for grid-connected inverters with long transmission cable[J]. IEEE Transactions on Power Electronics, 2014, 29(1):110-120.
[14] 贺益康,徐海亮. 双馈风电机组电网适应性问题及其谐振控制解决方案[J]. 中国电机工程学报, 2014, 34(29):5188-5203. HE Yikang, XU Hailiang. The grid adaptability problem of DFIG-based wind turbines and its solution by resonant control scheme[J].Proceedings of the CSEE, 2014, 34(29):5188-5203.
[15] ZHANG S, JIANG S, LU X, et al. Resonance issues and damping techniques for grid-connected inverters with long transmission cable[J]. IEEE Transactions on Power Electronics, 2014, 29(1):110-120.
[16] 李少林,王瑞明,陈晨,等. 大容量永磁同步风电机组系统谐振分析与试验研究[J]. 可再生能源,2014,32(9):1288-1293. LI Shaolin, WANG Ruiming, CHEN Chen, et al. Analysis and experiment research on resonance characteristics of large-capacity permanent magnet synchronous generator system[J]. Renewable Energy Resources, 2014, 32(9):1288-1293.
[17] KING R, EKANAYAKE J B. Harmonic modelling of offshore wind farms[C] //Power and Energy Society General Meeting. Minnesota, USA:IEEE Press, 2010:1-6.
[18] GHASSEMI F, KOO K. Equivalent network for wind farm harmonic assessments[J]. IEEE Transactions on Power Delivery, 2010, 25(3):1808-1815.
[19] SHAFIU A, HERNANDEZ A, SCHETTLER F, et al. Harmonic studies for offshore windfarms[C] //9th IET International Conference on AC and DC Power Transmission. London, UK:IET Digital Library, 2010:41-41.
[20] LI J, SAMAAN N, WILLIAMS S. Modeling of large wind farm systems for dynamic and harmonics analysis[C] // Transmission and Distribution Conference and Exposition. [S.l.] :IEEE Press, 2008:326-332.
[21] GHOSHAL A, JOHN V. Active damping of LCL filter at low switching to resonance frequency ratio[J]. IEEE Transactions on Power Electronics, 2015, 8(4):574-582.
[22] 王盼,刘飞,查晓明. 基于有源阻尼的并联有源滤波器输出LCL滤波器设计[J]. 电力自动化设备,2013,32(4):161-166. WANG Pan, LIU Fei, ZHA Xiaoming. Design of output LCL filter based on shunt APF with active damping[J]. Electric Power Automation Equipment, 2013, 32(4):161-166.
[1] 周栾爱1,唐文左2,崔晓华3,随慧斌4*. 电力电缆运行安全非线性模糊综合评判模型[J]. 山东大学学报(工学版), 2013, 43(6): 83-88.
[2] 随慧斌1,李靖强2,杨晓娟2,张存明2,徐斌2,颜彦2,刘长征2,徐文2. XLPE电缆局部放电在线监测系统研究[J]. 山东大学学报(工学版), 2012, 42(4): 126-131.
[3] 杜正旺. 基于时变相量的配电网PT过电压原因分析研究[J]. 山东大学学报(工学版), 2012, 42(2): 124-129.
[4] 马宗正,程勇*. 进气谐振器对汽油机进气性能影响的计算分析[J]. 山东大学学报(工学版), 2011, 41(1): 162-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[4] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[5] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[6] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[7] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[8] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[9] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[10] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .