您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 96-102.doi: 10.6040/j.issn.1672-3961.0.2016.394

• • 上一篇    下一篇

基于阶次分析的风电机组在线模态参数识别与故障诊断

李静立1,王谦1,张军2,李磊磊1   

  1. 1. 甘肃新泉风力发电有限公司, 甘肃 兰州 730070;2. 江苏省电力公司经济技术研究院, 江苏 南京 210008
  • 收稿日期:2016-10-26 出版日期:2017-08-20 发布日期:2016-10-26
  • 作者简介:李静立(1971— ),男,山东德州人,高级工程师,硕士,主要研究方向为新能源运行管理与风电并网技术研究.E-mail:ljlcn@vip.163.com

Online modal parameter identification and fault diagnosis of wind turbines based on order analysis

LI Jingli1, WANG Qian1, ZHANG Jun2, LI Leilei1   

  1. 1. Gansu Xinquan Wind Power Company Limited, Lanzhou 730070, Gansu, China;
    2. State Grid Jiangsu Economic Research Institute, Nanjing 210008, Jiangsu, China
  • Received:2016-10-26 Online:2017-08-20 Published:2016-10-26

摘要: 针对风电机组的健康监测和预警评估,将基于环境荷载激励的模态参数识别和计算阶次分析方法应用于风电机组齿轮箱系统的在线模态分析。设计并构建了风电机组在线模态参数识别与故障诊断系统,通过试验模态与在线模态识别参数以及不同环境荷载激励条件下的在线模态识别参数的测试结果对比,证明在线模态参数识别方法的可行性和实时性,系统运行稳定,数据可靠,为风电机组在线模态实测,多种环境荷载激励作用下动态特性以及故障诊断研究积累了大量数据。

关键词: 计算阶次分析, 故障诊断, 在线模态参数识别, 风电机组

Abstract: According to the health monitoring and early warning evaluation of wind turbines, the modal parameter identification based on the ambient load excitation and the computed order analysis methods were applied in the online modal analysis of wind turbine gearbox system. An online modal parameter identification and fault diagnosis system for wind turbines was designed and developed. Comparison of test results between experimental modal and online modal parameter identification, and online modal identification parameters due to the different ambient load excitation condition, showed that methods for online modal parameter identification were feasible, real-time, stable and reliable. By now, a large amount of data for online modal measurement, dynamic characteristics due to varied ambient load excitation and fault diagnosis of wind turbines has been provided.

Key words: online modal parameter identification, wind turbines, computed order analysis, fault diagnosis

中图分类号: 

  • TM315
[1] 黄鹏.大型风电齿轮箱系统模态分析[D].武汉:华中科技大学,2014. HUANG Peng. Modal analysis of wind turbine gearbox system[D].Wuhan: Huazhong University of Science and Technology, 2014.
[2] 汪江,杜晓峰,田万军,等.500 kV大跨越输电塔振动在线监测与模态分析系统[J].电网技术,2010,34(10):180-184. WANG Jiang, DU Xiaofeng, TIAN Wanjun, et al.Online vibration monitoring and modal analysis system of 500 kV long-span power pransmission power[J]. Power System Technology, 2010, 34(10):180-184.
[3] 李枝军,李爱群,韩晓林,等.润扬大桥悬索桥在线模态分析系统的设计与实现研究[J].振动与冲击,2008,27(6):32-35. LI Zhijun, LI Aiqun, HAN Xiaolin, et al.Design and realization of online modal analysis system for Run-Yang suspension bridge[J]. Journal of Vibration and Shock, 2008, 27(6):32-35.
[4] FRANK P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results[J]. Automatica, 1990, 26(3):459-474.
[5] TSAI C, HSIEH C T, HUANG S J. Enhancement of damage-detection of wind turbine blades via CWT-based approaches[J]. Energy Conversion, IEEE Transactions on, 2006, 21(3):776-781.
[6] EREN L, DEVANEY M J. Bearing damage detection via wavelet packet decomposition of the stator current[J]. Instrumentation & Measurement, IEEE Transactions on, 2004, 53(2):431-436.
[7] YANG W, TAVNER P J, WILKINSON M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, IET, 2009, 3(1):1-11.
[8] HAMEED Z, HONG Y S, CHO Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1):1-39.
[9] 周凯.基于环境荷载激励的海洋平台结构模态参数识别技术研究[D].青岛:中国海洋大学,2009. ZHOU Kai. Research on modal parameter identification based on ambient excitation for offshore platforms[D].Qingdao:Ocean University of China, 2009.
[10] 岳晓峰,朱成伟.阶次分析在变速箱故障诊断中的应用及其研究[J].自动化仪表,2016,36(6):8-11. YUE Xiaofeng, ZHU Chengwei. Application and research of order analysis in gearbox fault diagnosis[J].Process Automation Instrumentation, 2016, 36(6):8-11.
[11] 陈长征,王海童,孙自强.基于阶次分析的风机增速箱故障诊断[J].重型机械,2016(2):86-90. CHEN Changzheng, WANG Haitong, SUN Ziqiang. Fault diagnosis of wind turbine gearbox based on order analysis[J]. Heavy Machinery, 2016(2):86-90.
[12] 王况,王科盛,左明健.基于阶次分析技术的行星齿轮箱非平稳振动信号分析[J].振动与冲击,2016,35(5):140-145. WANG Kuang, WANG Kesheng, ZUO Mingjian.Fault diagnosis of a planetary gearbox based on order tracking[J]. Journal of Vibration and Shock, 2016, 35(5):140-145.
[13] 齐立群,张广玉,单小彪,等.一种有效的空间齿轮传动系统振动测点选择方法[J].振动与冲击,2012,31(22):163-166. QI Liqun, ZHANG Guangyu, SHAN Xiaobiao, et al. An effective method to select vibration measurement points for a space gear transmission system[J].Journal of Vibration and Shock, 2012, 31(22):163-166.
[14] 冯志鹏,褚福磊.行星齿轮箱故障诊断的扭转振动信号分析方法[J].中国电机工程学报,2013,33(14):101-106. FENG Zhipeng, CHU Fulei. Torsional vibration signal analysis method for fault diagnosis of planetary gearboxes[J]. Proceedings of the CSEE, 2013, 33(14):101-106.
[15] 李中付,宋汉文,华宏星,等.基于环境激励的模态参数识别方法综述[J].振动工程学报,2000, 13(S1):578-585. LI Zhongfu, SONG Hanwen, HUA Hongxing, et al. Review of modal identification method based on ambient excitation[J].Journal of Vibration Engineering, 2000, 13(S1):578-585.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[4] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[5] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[6] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[7] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[8] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[9] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[10] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[11] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[12] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[13] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[14] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[15] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!