山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 56-62.doi: 10.6040/j.issn.1672-3961.0.2016.305
任永峰,董学育
REN Yongfeng, DONG Xueyu
摘要: 为了在图像显著性区域提取过程中改善算法的自适应性和精准度,提出基于自适应流形相似性的图像显著性区域检测算法。将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;针对高频节点利用凸包运算寻找显著性区域的种子节点;使用流形算法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明:利用流形算法搭建求解每个数据的邻接矩阵进行信息扩散,能够在保证信息精准分类的同时提高算法的自适应性,其结果优于同类的图像显著性区域检测算法。
中图分类号:
[1] WANG Tiantian, XIU Chunbo, CHENG Yi. Vehicle recognition based on saliency detection and color histogram[C] //Proceedings of the 27th Chinese Control and Decision Conference(2015CCDC). Qingdao, China:IEEE, 2015:2532-2535. [2] LINDEBERG T. Scale-Space Theory in Computer Vision[M].New York, USA:Springer International, 1994:349-382. [3] THIMBLEBY H. Press on-principles of interaction programming[M].Massachusetts, USA:The MIT Press, 2007:224-271. [4] QIN C, ZHANG G, ZHOU Y, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4):378-391. [5] CHANG K Y, LIU T L, CHEN H T, et al. Fusing generic objectness and visual saliency for salient object detection[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:914-921. [6] 任永峰, 周静波, 王志坚. 基于光线变化的显著性区域提取[J]. 南京大学学报(自然科学版), 2015, 51(1):125-131. REN Yongfeng, ZHOU Jingbo, WANG Zhijian. A saliency detection base on the change of light[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(1):125-131. [7] LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2):353-367. [8] ROTHER C, KOLMOGOROV V, BLAKE A. Grab cut interactive foreground extraction using iterated graph cuts[C] //Proceedings of the ACM Transactions on Graphics. New York, USA:ACM, 2004, 23(3):309-314. [9] 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015(6):1-6. REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion[J]. Journal of Shandong University(Engineering Science), 2015(6):1-6. [10] 李春雷, 张兆翔, 刘洲峰. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版),2014,44(4):1-8. LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University(Engineering Science), 2014, 44(4):1-8. [11] 王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1):12-16. WANG Xiufen, WANG Huiyuan, WANG Song. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):12-16. [12] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [13] ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic functions [C] //Proceedings of the 20th International Conference on Machine Learning(ICML).Washington DC, USA:IEEE, 2003(2):912-919. [14] GRETTON A, BORGWARD K M, RASCH M J, et al. A kernel method for the two-sample-problem[C] //Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada:NIPS, 2007:513-520. [15] XIE Y, LU H, YANG M. Bayesian saliency via low and mid-level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5):1689-1698. [16] VAN D W J, GEVERS T, BAGDANOV A D. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(1):150-156. [17] LAAR Van De P, HESKES T, GIELEN S. Task-dependent learning of attention[J]. Neural Networks, 1997, 10(6):981-992. [18] LI Y, MA Y F, ZHANG H J. Salient region detection and tracking in video[C] //Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, USA:IEEE Computer Society, 2003(2):269-272. [19] JIANG H, WANG J, YUAN Z, et al. Salient object detection:a discriminative regional feature integration approach[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA: IEEE, 2013:2083-2090. [20] SEO H J, MILANFAR P. Nonparametric bottom-up saliency detection by self-resemblance[C] //Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, USA:IEEE, 2009:45-52. [21] ZHU J Y, WU J, XU Y, et al. Unsupervised object class discovery via saliency-guided multiple class learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(4):862-875. [22] JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. IEEE Transactions on Image Processing, 2012, 21(3):1272-1283. [23] MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct? [C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Sydney, Australia:IEEE, 2013:1139-1146. [24] WANG L, XUE J, ZHENG N, et al. Automatic salient object extraction with contextual cue[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:105-112. [25] SUN J, LU H, LIU X. Saliency region detection based on markov absorption probabilities[J]. IEEE Transactions on Image Processing, 2015, 24(5):1639-1649. [26] LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction [C] //Proceedings of the 2013 IEEE International Conference on Computer Vision(ICCV). Sydney, Australia:IEEE, 2013:2976-2983. [27] YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA:IEEE, 2013:1155-1162. [28] SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery[C] //Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence, USA:IEEE, 2012:853-860. [29] SANG Nong, WEI Longsheng, WANG Yuehuan. A biologically-inspired top-down learning model based on visual attention[C] //Proceedings of the International Conference on Pattern Recognition(ICPR)Istanbul. Turkey:IEEE, 2010:3736-3739. [30] LYU Jiayong, TANG Zhenmin, XU Wei. Improved bayesian saliency detection based on bing and graph model[J]. Open Cybernetics & Systemics Journal, 2015, 9(1):648-656. |
[1] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37. |
[2] | 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9. |
[3] | 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87. |
[4] | 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103. |
[5] | 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62. |
[6] | 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6. |
[7] | 褚振忠,朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63. |
[8] | 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85. |
[9] | 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53. |
[10] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6. |
[11] | 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. |
[12] | 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42. |
[13] | 夏海英1,杜海明2,徐鲁辉1,颜远辉1. 基于自适应词典学习和稀疏表示的人脸表情识别[J]. 山东大学学报(工学版), 2014, 44(1): 45-48. |
[14] | 翟东海1,2,鱼江1,聂洪玉1,崔静静1,杜佳1. 基于相关性反馈的自适应热点话题追踪模型[J]. 山东大学学报(工学版), 2014, 44(1): 7-12. |
[15] | 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20. |
|