您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1-6.doi: 10.6040/j.issn.1672-3961.0.2015.176

• 机器学习与数据挖掘 •    下一篇

基于信息弥散机制的图像显著性区域提取算法

任永峰1,2, 周静波1   

  1. 1. 淮阴工学院计算机与软件工程学院, 江苏淮安 223003;
    2. 河海大学计算机与信息学院, 江苏南京 211100
  • 收稿日期:2015-06-08 修回日期:2015-11-02 出版日期:2015-12-20 发布日期:2015-06-08
  • 作者简介:任永峰(1980-),男,山东菏泽人,讲师,博士研究生,主要研究方向为图像分析.E-mail:renyongfeng@hyit.edu.cn
  • 基金资助:
    江苏省高校自然科学研究面上资助项目(14KJB520006)

An image saliency object detection algorithm based on information diffusion

REN Yongfeng1,2, ZHOU Jingbo1   

  1. 1. Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China;
    2. College of Computer and Information, Hohai University, Nanjing 211100, Jiangsu, China
  • Received:2015-06-08 Revised:2015-11-02 Online:2015-12-20 Published:2015-06-08

摘要: 为了更好提取图像的显著性区域,提出基于信息弥散机制的图像显著性区域检测算法。在所提算法中,首先将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;然后针对高频节点利用凸包运算寻找显著性区域的种子节点,最后使用二阶高斯-马尔科夫随机场信息弥散方法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明,利用二次规划求解每个数据之间的线性关系进行信息扩散,能够达到避免阈值选择和信息精准分类的效果,其结果优于同类的图像显著性区域检测算法。

关键词: 信息弥散, 高斯-马尔科夫随机场, 高频节点, 显著性检测, 凸包运算

Abstract: In order to better extract salient regions in images, we proposed an image salient region detection algorithm based on information diffusion mechanism. The proposed algorithm was divided into three steps. First, we segmented an input image into superpixels which were represented as the nodes in a graph. The node with high frequency was generated by the characteristics of the salient regions. Then, according to high-frequency nodes, convex hull computation was used to generate the saliency seeds of the salient object area. Finally, based on the seeds obtained by convex hull computation, the second-order Gaussian-Markov random fields were used to diffuse the information from saliency seeds to others, thereby forming the saliency region for a given image. The experimental results showed that the quadratic programming solution exploited to compute the weights between the nodes can effectively avoid threshold selection and enhance robustness accordingly. In addition, the proposed method performed better than the other state-of-the-art methods.

Key words: convex hull computation, information diffusion, saliency detection, Gaussian-Markov random fields, high frequency node

中图分类号: 

  • TP301.6
[1] RUTISHAUSER U, WALTHER D, KOCH C, et al. Is bottom-up attention useful for object recognition[C]//Proceedings of the 2004 CVPR, Washington,USA:IEEE Computer Society Conference, 2004:37-44.
[2] 李春雷, 张兆翔, 刘洲峰. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报:工学版,2014,44(4):1-8. LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University:Engineering Science, 2014, 44(4):1-8.
[3] NAVALPAKKAM V, ITTI L. An integrated model of top-down and bottom-up attention for optimizing detection speed[C]//Proceedings of the 2013 CVPR, Oregon,USA:IEEE Computer Society Conference, 2006:2049-2056.
[4] 王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报:工学版, 2011, 41(1):12-16. WANG Xiufen, WANG Huiyuan, WANG Song. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University:Engineering Science, 2011, 41(1):12-16.
[5] GUO C, ZHANG L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1):185-198.
[6] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254-1259.
[7] MA Y F, ZHANG H J. Contrast-based image attention analysis by using fuzzy growing[C]//Proceedings of the eleventh ACM, New York,USA:International Multimedia Conference, 2003:374-381.
[8] REN Y, ZHOU J, WANG Z, et al. An improved saliency detection for different light conditions[J]. KSII Transactions on Internet and Information Systems(TIIS), 2015, 9(3):1155-1172.
[9] 任永峰, 周静波, 王志坚. 基于光线变化的显著性区域提取[J]. 南京大学学报:自然科学版, 2015, 51(1):125-131. REN Yongfeng, ZHOU Jingbo, WANG Zhijian. A saliency detection base on the change of light[J]. Journal of Nanjing University:Natural Sciences, 2015, 51(1):125-131.
[10] XIE Y, LU H, YANG M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2012, 22(5):1689-1698.
[11] WANG J, WANG F, ZHANG C, et al. Linear neighborhood propagation and its applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(9):1600-1615.
[12] RUE H, HELD L. Gaussian Markov random fields. Chapman & Hall/CRC Boca, 2005.
[13] NOCEDAL J, WRIGHT J S. Numerical optimization[M]. Singapore,Singapore:World Scientific, 2006:121-122.
[14] LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. Pattern Analysis and Machine Intelligence, 2011, 33(2):353-367.
[15] MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinction[C]//Proceedings of the 2013 CVPR. Portland, USA:IEEE Computer Society Conference, 2013:1139-1146.
[16] CHANG K Y, LIU T L, CHEN H T, et al. Fusing generic objectness and visual saliency for salient object detection[C]//Proceedings of the 2011 ICCV, Barcelona, Spain, 2011:914-921.
[17] YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]//Proceedings of the 2013 CVPR. Portland,USA:IEEE Computer Society Conference, 2013:1139-1146.
[18] LI X, LU H, ZHANG L, et al. Fusing generic objectness and visual saliency for salient object detection[C]//Proceedings of the 2013 ICCV, Sydney, Australian, 2013:2976-2983.
[19] WU Y. A unified approach to salient object detection via low rank matrix recovery[C]//Proceedings of the 2012 CVPR. Providence, USA:IEEE Computer Society Conference, 2012:853-860.
[20] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//Proceedings of the 2009 CVPR. Miami, USA:IEEE Computer Society Conference, 2009:1597-1604.
[21] ZHOU D, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[J]. Advances in Neural Information Processing Systems, 2004, 17(4):321-328.
[1] 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62.
[2] 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!