您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 56-62.doi: 10.6040/j.issn.1672-3961.0.2016.305

• • 上一篇    下一篇

基于自适应流形相似性的图像显著性区域提取算法

任永峰,董学育   

  1. 南京工程学院电力仿真与控制工程中心, 江苏 南京 210013
  • 收稿日期:2016-07-22 出版日期:2017-06-20 发布日期:2016-07-22
  • 作者简介:任永峰(1980— ),男,山东菏泽人,讲师,博士,主要研究方向为图像分析.E-mail:316962453@qq.com
  • 基金资助:
    江苏省高校自然科学研究面上资助项目(14KJB520006)

An image saliency object detection algorithm based on adaptive manifold similarity

REN Yongfeng, DONG Xueyu   

  1. Electrical Power Simulation and Control Engineering Center, Nanjing Institute of Technology, Nanjing 210013, Jiangsu, China
  • Received:2016-07-22 Online:2017-06-20 Published:2016-07-22

摘要: 为了在图像显著性区域提取过程中改善算法的自适应性和精准度,提出基于自适应流形相似性的图像显著性区域检测算法。将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;针对高频节点利用凸包运算寻找显著性区域的种子节点;使用流形算法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明:利用流形算法搭建求解每个数据的邻接矩阵进行信息扩散,能够在保证信息精准分类的同时提高算法的自适应性,其结果优于同类的图像显著性区域检测算法。

关键词: 显著性检测, 自适应, 流形相似, 显著信息扩散, 凸包运算

Abstract: In order to improve the adaptability and precision in extracting salient regions in images, an image salient region detection algorithm was proposed based on adaptive manifold similarity. An input image was segmented into super-pixels which were represented as the nodes in a graph. The node with high frequency was generated by the characteristics of the salient regions. Convex hull computation was used to generate the saliency seeds of the salient object area according to high-frequency nodes. The proposed algorithm was used to complete information reconstruction of the current image by adaptively assessing the salient weights on the edges between the nodes. In addition, based on local characteristics information reconstruction, the proposed algorithm utilized similarity extraction function to self-adaptively obtain the similarity characteristics and manifold structures in order to spread salient characteristics information. The experimental results showed that the quadratic programming solution exploited to compute the weights between the nodes could effectively avoid threshold selection and enhance robustness accordingly, and the proposed method performed better than the other state-of-the-art methods.

Key words: saliency detection, manifold similarity, convex hull computation, spread salient characteristics, adaptive

中图分类号: 

  • TP301.6
[1] WANG Tiantian, XIU Chunbo, CHENG Yi. Vehicle recognition based on saliency detection and color histogram[C] //Proceedings of the 27th Chinese Control and Decision Conference(2015CCDC). Qingdao, China:IEEE, 2015:2532-2535.
[2] LINDEBERG T. Scale-Space Theory in Computer Vision[M].New York, USA:Springer International, 1994:349-382.
[3] THIMBLEBY H. Press on-principles of interaction programming[M].Massachusetts, USA:The MIT Press, 2007:224-271.
[4] QIN C, ZHANG G, ZHOU Y, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4):378-391.
[5] CHANG K Y, LIU T L, CHEN H T, et al. Fusing generic objectness and visual saliency for salient object detection[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:914-921.
[6] 任永峰, 周静波, 王志坚. 基于光线变化的显著性区域提取[J]. 南京大学学报(自然科学版), 2015, 51(1):125-131. REN Yongfeng, ZHOU Jingbo, WANG Zhijian. A saliency detection base on the change of light[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(1):125-131.
[7] LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2):353-367.
[8] ROTHER C, KOLMOGOROV V, BLAKE A. Grab cut interactive foreground extraction using iterated graph cuts[C] //Proceedings of the ACM Transactions on Graphics. New York, USA:ACM, 2004, 23(3):309-314.
[9] 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015(6):1-6. REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion[J]. Journal of Shandong University(Engineering Science), 2015(6):1-6.
[10] 李春雷, 张兆翔, 刘洲峰. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版),2014,44(4):1-8. LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University(Engineering Science), 2014, 44(4):1-8.
[11] 王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1):12-16. WANG Xiufen, WANG Huiyuan, WANG Song. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):12-16.
[12] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282.
[13] ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic functions [C] //Proceedings of the 20th International Conference on Machine Learning(ICML).Washington DC, USA:IEEE, 2003(2):912-919.
[14] GRETTON A, BORGWARD K M, RASCH M J, et al. A kernel method for the two-sample-problem[C] //Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada:NIPS, 2007:513-520.
[15] XIE Y, LU H, YANG M. Bayesian saliency via low and mid-level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5):1689-1698.
[16] VAN D W J, GEVERS T, BAGDANOV A D. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(1):150-156.
[17] LAAR Van De P, HESKES T, GIELEN S. Task-dependent learning of attention[J]. Neural Networks, 1997, 10(6):981-992.
[18] LI Y, MA Y F, ZHANG H J. Salient region detection and tracking in video[C] //Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, USA:IEEE Computer Society, 2003(2):269-272.
[19] JIANG H, WANG J, YUAN Z, et al. Salient object detection:a discriminative regional feature integration approach[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA: IEEE, 2013:2083-2090.
[20] SEO H J, MILANFAR P. Nonparametric bottom-up saliency detection by self-resemblance[C] //Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, USA:IEEE, 2009:45-52.
[21] ZHU J Y, WU J, XU Y, et al. Unsupervised object class discovery via saliency-guided multiple class learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(4):862-875.
[22] JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. IEEE Transactions on Image Processing, 2012, 21(3):1272-1283.
[23] MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct? [C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Sydney, Australia:IEEE, 2013:1139-1146.
[24] WANG L, XUE J, ZHENG N, et al. Automatic salient object extraction with contextual cue[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:105-112.
[25] SUN J, LU H, LIU X. Saliency region detection based on markov absorption probabilities[J]. IEEE Transactions on Image Processing, 2015, 24(5):1639-1649.
[26] LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction [C] //Proceedings of the 2013 IEEE International Conference on Computer Vision(ICCV). Sydney, Australia:IEEE, 2013:2976-2983.
[27] YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA:IEEE, 2013:1155-1162.
[28] SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery[C] //Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence, USA:IEEE, 2012:853-860.
[29] SANG Nong, WEI Longsheng, WANG Yuehuan. A biologically-inspired top-down learning model based on visual attention[C] //Proceedings of the International Conference on Pattern Recognition(ICPR)Istanbul. Turkey:IEEE, 2010:3736-3739.
[30] LYU Jiayong, TANG Zhenmin, XU Wei. Improved bayesian saliency detection based on bing and graph model[J]. Open Cybernetics & Systemics Journal, 2015, 9(1):648-656.
[1] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37.
[2] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[3] 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87.
[4] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[5] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[6] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[7] 褚振忠,朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63.
[8] 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85.
[9] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53.
[10] 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6.
[11] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
[12] 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42.
[13] 夏海英1,杜海明2,徐鲁辉1,颜远辉1. 基于自适应词典学习和稀疏表示的人脸表情识别[J]. 山东大学学报(工学版), 2014, 44(1): 45-48.
[14] 翟东海1,2,鱼江1,聂洪玉1,崔静静1,杜佳1. 基于相关性反馈的自适应热点话题追踪模型[J]. 山东大学学报(工学版), 2014, 44(1): 7-12.
[15] 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!