山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 49-55.doi: 10.6040/j.issn.1672-3961.0.2016.310
李璐,范文涛,杜吉祥*
LI Lu, FAN Wentao, DU Jixiang*
摘要: 为解决在使用期望最大化(EM)算法求解混合模型前需要额外的计算问题,提出一种新的基于Markov随机场的Student's t混合模型,该模型能直接利用简单有效的EM算法求解。试验结果表明,该方法能有效克服噪声对图像分割的影响,获得较好的分割结果。
中图分类号:
[1] 江贵平, 秦文健, 周寿军,等. 医学图像分割及其发展现状[J].计算机学报, 2015, 38(6):1222-1242. JIANG Guiping, QIN Wenjia, ZHOU Shoujun, et al. State-of-the-art in medical image segmentation [J]. Chinese Journal of Computers, 2015, 38(6):1222-1242. [2] ZHANG H, WEN T, ZHENG Y, et al. Two fast and robust modified Gaussian mixture models incorporating local spatial information for image segmentation [J].Journal of Signal Processing Systems, 2015, 81(1):45-58. [3] NGUYEN T M, WU Q M J. Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem[J].IEEE Transactions on Systems,Man and Cybernetics, Part B(Cybernetics), 2012, 42(1):193-202. [4] ZHANG Y, BRADY M, SMITH S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57. [5] JI Z, XIA Y, SUN Q, et al. Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation[J].Neurocomputing, 2014, 134(6):60-69. [6] JI J, WANG K L. A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation[C] //Proceedings of the 2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).Beijing, China:IEEE, 2014:202-209. [7] JI Z, LIU J, CAO G, et al. Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation[J].Pattern Recognition, 2014, 47(7):2454-2466. [8] SHAO G, GAO J, WANG T, et al. Fuzzy c-means clustering with a new regularization term for image segmentation[C] //Proceedings of the 2014 International Joint Conference on Neural Networks(IJCNN).Beijing, China:IEEE, 2014: 2862-2869. [9] DONG F, PENG J. Brain MR image segmentation based on local Gaussian mixture model and nonlocal spatial regularization[J].Journal of Visual Communication & Image Representation, 2014, 25(5):827-839. [10] GREENSPAN H, RUF A, GOLDBERGER J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9):1233-1245. [11] SONG Y, JI Z, SUN Q. An extension Gaussian mixture model for brain MRI segmentation[J]. Conference: International Conference of the IEEE Engineering in Medicine & Biology Society IEEE Engineering in Medicine & Biology Society Conference. Conf Proc IEEE Eng Med Biol Soc, 2014:4711-4714. [12] BALAFAR M A, RAMLI A R, SARIPAN M I, et al. Review of brain MRI image segmentation methods[J]. Artificial Intelligence Review, 2010, 33(3):261-274. [13] SKIBBE H, REISERT M, BURKHARDT H. Gaussian neighborhood descriptors for brain segmentation [C] //Proceedings of the 12th IAPR Conference on Machine Vision Applications(MVA 2011). Nara, Japan: IAPR, 2011:35-38. [14] SFIKAS G, NIKOU C, GALATSANOS N. Robust image segmentation with mixtures of student's t-distributions[C] //Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, USA:IEEE, 2007: I-273-I-276. [15] SFIKAS G, NIKOU C, GALATSANOS N, et al. MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model[J].Medical Image Computing and Computer-assisted Intervention-MICCAI 2008, 2008, 11(1):43-50. [16] SFIKAS G, NIKOU C, GALATSANOS N, et al. Spatially varying mixtures incorporating line processes for image segmentation[J].Journal of Mathematical Imaging and Vision, 2010, 36(2):91-110. [17] DIPLAROS A, VLASSIS N, GEVERS T. A spatially constrained generative model and an EM algorithm for image segmentation[J].IEEE Transactions on Neural Networks, 2007, 18(3):798-808. [18] NIKOU C, GALATSANOS N P, LIKAS A C. A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing, 2007, 16(4):1121-1130. [19] BLEKAS K, LIKAS A, GALATSANOS N P, et al. A spatially constrained mixture model for image segmentation[J].IEEE Transactions on Neural Networks, 2005, 16(2):494-498. [20] NGUYEN T M, WU Q M J. Robust student's-t mixture model with spatial constraints and its application in medical image segmentation[J].IEEE Transactions on Medical Imaging, 2012, 31(1):103-116. [21] NIKOU C, LIKAS A C, GALATSANOS N P. A Bayesian framework for image segmentation with spatially varying mixtures[J].IEEE Transactions on Image Processing, 2010, 19(9):2278-2289. [22] ASHBURNER J, FRISTON K J. Unified segmentation[J].Neuroimage, 2005, 26(3):839-851. [23] PEEL D, MCLACHLAN G J. Robust mixture modeling using the t distribution[J].Statistics & Computing, 2000, 10(4):339-348. [24] NGUYEN T M, WU Q M J. Fast and robust spatially constrained Gaussian mixture model for image segmentation[J].IEEE Transactions on Circuits & Systems for Video Technology, 2013, 23(4):621-635. [25] CHATZIS S P, VARVARIGOU T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J].IEEE Transactions on Fuzzy Systems, 2008, 16(5):1351-1361. |
[1] | 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42. |
[2] | 王晓初, 王士同, 包芳. 基于概率密度分布一致约束的最小最大概率机图像分类算法[J]. 山东大学学报(工学版), 2015, 45(5): 13-21. |
[3] | 张东波,寇涛,许海霞. 基于LDB描述子和局部空间结构匹配的快速场景辨识[J]. 山东大学学报(工学版), 2018, 48(5): 16-23. |
[4] | 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版), 2018, 48(5): 24-31. |
[5] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37. |
[6] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报(工学版), 2018, 48(5): 95-102. |
[7] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[8] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报(工学版), 2018, 48(5): 55-60. |
[9] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报(工学版), 2018, 48(5): 9-15. |
[10] | 李广丽,刘斌,朱涛,殷依,张红斌. 基于优选典型相关分量的跨媒体检索模型[J]. 山东大学学报(工学版), 2018, 48(5): 38-46. |
[11] | 吴晨谋,方志军,黄正能. 基于单目摄像头的主动式驾驶行为分析算法[J]. 山东大学学报(工学版), 2018, 48(5): 69-76. |
[12] | 江珊珊,杨静,范丽亚. 基于PDEs的图像特征提取方法[J]. 山东大学学报(工学版), 2018, 48(4): 27-36. |
[13] | 窦婷婷,姚元玺,陈鹏,芦灯. 基于ATP-EMTP的电弧建模及工程仿真[J]. 山东大学学报(工学版), 2018, 48(4): 102-108. |
[14] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[15] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
|