山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 57-63.doi: 10.6040/j.issn.1672-3961.0.2017.210
褚振忠,朱大奇
CHU Zhenzhong, ZHU Daqi
摘要: 研究自主式水下机器人(autonomous underwater vehicle, AUV)的推进器自适应区域跟踪容错控制方法。 与传统的自主式水下机器人容错控制方法不同,采用区域跟踪控制思想,将控制目标设定为以期望轨迹为中心的空间区域。 针对系统中存在的不确定性及推进器故障问题,采用神经网络进行在线辨识。 考虑到推进器故障时存在推力饱和而导致神经网络学习发散的问题,提出一种包含饱和因子的神经网络权值调整方法。 通过仿真,对所提方法的有效性进行验证。
中图分类号:
[1] 朱大奇, 刘乾, 胡震. 无人水下机器人可靠性控制技术[J]. 中国造船,2009,50(2):183-192. ZHU Daqi, LIU Qian, HU Zhen. Reliability control technology of unmanned underwater vehicles[J]. Shipbuilding of China, 2009, 50(2):183-192. [2] CORRADINI M L, CRISTOFARO A. A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles[J]. IFAC-PapersOnLine, 2016, 49(23):285-290. [3] WANG Y, ZHANG M, WILSON P, et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thrust fault[J]. Ocean Engieering, 2015, 110(1):15-24. [4] ZHANG M, LIU X, YIN B, et al. Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents[J]. Journal of the Franklin Institute, 2015, 352(11):4935-4961. [5] ISMAIL Z H, MOKHAR M B M, PUTRANTI V W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2016, 111:155-165. [6] CHEAH C C, WANG D Q. Region reaching control of robots: theory and experiments[C] // Proceedings of the 2005 IEEE International Conference on Robotics and Automation. [s.l.] :IEEE, 2005:974-979. [7] LI X, HOU S P, CHEAH C C. Adaptive region tracking control for autonomous underwater vehicle[C] // Proceedings of the 2010 11th International Conference on Control. Automation Robotics & Vision. Singapore: IEEE, 2010:2129-2134. [8] ISMAIL Z H, DUNNIGAN M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2011, 38(11):2270-2280. [9] CORRADINI M L, MONTERIU A, ORLANDO G. An actuator failure tolerant control scheme for an underwater remotely operated vehicle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5):1036-1046. [10] KIM D W. Tracking of REMUS autonomous underwater vehicles with actuator saturations[J]. Automatica, 2015, 58:15-21. [11] GAO J, PROCTOR A A, SHI Y, et al. Hierarchical model predictive image-based visual serving of underwater vehicles with adaptive neural network dynamic control[J]. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334. [12] 俞建成, 张艾群, 王晓辉,等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8):840-846. YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatica Sinica, 2007, 33(8):840-846. [13] SUN Y S, RAN X R, LI Y M, et al. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3):243-251. [14] 张铭钧, 褚振忠. 自主式水下机器人自适应区域跟踪控制[J]. 机械工程学院, 2013, 4(7):148-155. ZHANG Mingjun, CHU Zhenzhong. Adaptive region tracking control for autonomous underwater vehicle[J]. Journal of Mechanical Engineering, 2013, 4(7):148-155. [15] HUANG X, YAN Y, ZHOU Y. Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation[J]. Neurocopution, 2017, 222(26):191-203. [16] JIA C, LI X, WANG K, et al. Adaptive control of nonlinear system using online error minimum neural networks[J]. ISA Transactions, 2016, 65:125-132. [17] PODDER T K, SARKAR N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy[J]. Robotics and Autonomous Systems, 2001, 34(1):39-52. |
[1] | 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37. |
[2] | 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9. |
[3] | 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87. |
[4] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[5] | 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103. |
[6] | 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62. |
[7] | 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6. |
[8] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[9] | 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209. |
[10] | 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214. |
[11] | 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245. |
[12] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[13] | 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62. |
[14] | 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53. |
[15] | 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. |
|