山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 80-85.doi: 10.6040/j.issn.1672-3961.0.2016.221
翟继友1,2,周静波1,任永峰2,王志坚2
ZHAI Jiyou1,2, ZHOU Jingbo1, REN Yongfeng2, WANG Zhijian2
摘要: 为了更精确地提取图像中的显著性区域,提出一种新的基于背景和前景交互传播的图像显著性检测计算模型。通过建立一个新的模型来寻找图像中的显著性元素,用一种交互式特征传播方法来扩散显著性特征。采用不同参数对图像进行分割,得到多个尺度下的超像素;在单一尺度下通过背景和前景交互传播获得超像素的显著值;对多个显著值进行加权平均融合,并采用平滑机制进行优化得到最终显著图。在公开图像数据库进行的试验结果表明,该模型提高了对图像显著目标大小的适应性,不仅较好地抑制了噪声,还使得显著目标更均匀地凸显出来,结果优于同类的算法。
中图分类号:
[1] ZHANG H, XU M, ZHUO L, et al. A novel optimization framework for salient object detection[J]. Visual Computer, 2016, 32(1):31-41. [2] 李春雷, 张兆翔, 刘洲峰. 基于纹理差异视觉显著性的织物疵点检测算法[J].山东大学学报(工学版),2014,44(4):1-8. LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University(Engineering Science), 2014, 44(4):1-8. [3] 钱生,陈宗海,林名强,等.基于条件随机场和图像分割的显著性检测[J].自动化学报,2015,41(4):711-724. QIAN Sheng, CHEN Zonghai, LIN Mingqiang, et al. Saliency detection based on conditional random field and image segmentation[J]. Acta Automatica Sinica, 2015, 41(4):711-724. [4] 任永峰,周静波.基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6):1-6. REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion[J]. Journal of Shandong University(Engineering Science), 2015, 45(6):1-6. [5] JIANG H, WANG J, YUAN Z, et al. Salient object detection: a discriminative regional feature integration approach[C] //IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE Press, 2014:2083-2090. [6] ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C] //IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA:IEEE Press, 2014:2814-2821. [7] GOPALAKRISHNAN V, HU Y Q, RAJAN D. Random walks on graphs for salient object detection in images[J]. IEEE Transactions on Image Processing, 2010, 19(12):3232-3242. [8] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C] //IEEE Conference on Computer Vision and Pattern Recognition. Miami,Florida, USA: IEEE Press, 2009:1597-1604. [9] Kim J S, Kim H, Sim J Y, et al. Video saliency detection based on random walk with restart[C] //IEEE International Conference on Image Processing, 2013:2465-2469. [10] YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C] //IEEE Conference on Computer Vision and Pattern Recognition.Portland, USA: IEEE Press, 2013:3166-3173. [11] MOSCHENI F, BHATTACHARJEE S, KUNT M. Spatio-temporal segmentation based on region merging[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(9):897-915. [12] ZHAI J, ZHOU J, REN Y, et al. Salient object detection via multiple random walks[J].KSII Transactions on Internet and Information Systems, 2016, 10(4):1712-1731. [13] 徐少平,刘小平, 李春泉,等.基于稠密局部自相似特征流的图像配准算法[J].光电子·激光,2013,24(8):1619-1628. XU Shaoping, LIU Xiaoping, LI Chunquan, et al. An image registration algorithm based on dense local self-similarity feature flow[J].Journal of Optoelectronics.Laser, 2013, 24(8):1619-1628. [14] HOU X, ZHANG L. Saliency detection: a spectral residual approach[C] //IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE Press, 2007:1-8. [15] XIA C, QI F, SHI G, et al. Nonlocal center—surround reconstruction-based bottom-up saliency estimation[J]. Pattern Recognition, 2015, 48(4):1337-1348. [16] MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinction[C] //IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA:IEEE Press, 2013:1139-1146. [17] CHANG K Y, LIU T L, CHEN H T, et al. Fusing generic objectness and visual saliency for salient object detection[C] //IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE Press, 2011:914-921. [18] YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C] //IEEE International Conference on Computer Vision. Portland, USA: IEEE Press, 2013:1155-1162. [19] WANG L, XUE J, ZHENG N, et al. Automatic salient object extraction with contextual cue[C] //IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE Press, 2011:105-112. [20] ZHOU J, REN Y, YAN Y, et al. Salient object detection: manifold-based similarity adaptation approach[J]. Journal of Electronic Imaging, 2014, 23(6):704-714. [21] JIANG H, WANG J, YUAN Z, et al. Salient object detection: a discriminative regional feature integration approach[C] //IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA:IEEE Press, 2013:2083-2090. [22] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C] //IEEE Conference on Computer Vision and Pattern Recognition. Miami,USA: IEEE Press, 2009:1597-1604. [23] ZHOU D, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[J]. Advances in Neural Information Processing Systems, 2004, 17(4):321-328. |
[1] | 惠开发,成科扬,詹永照. 基于改进ViBe算法的视频浓缩[J]. 山东大学学报(工学版), 2017, 47(3): 43-48. |
[2] | 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62. |
[3] | 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70. |
[4] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6. |
[5] | 郭志波, 董健, 庞成. 多技术融合的Mean-Shift目标跟踪算法[J]. 山东大学学报(工学版), 2015, 45(2): 10-16. |
[6] | 邱晓欣1,2,张文强1,2*,秦晋贤1,2,杜正阳1,2,张德峰1,2. 恶劣环境下多目标实时跟踪算法研究[J]. 山东大学学报(工学版), 2014, 44(2): 21-27. |
[7] | 佀君淑,朱文兴*,沙永贺. 复杂背景下的交通信号灯综合识别方法[J]. 山东大学学报(工学版), 2014, 44(2): 64-68. |
[8] | 王秀芬,王汇源,王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1): 12-16. |
[9] | 崔英,陈文楷,雷飞 . 基于背景减法的游泳者检测[J]. 山东大学学报(工学版), 2008, 38(1): 39-42 . |
|