您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 151-162.doi: 10.6040/j.issn.1672-3961.0.2024.268

• 土木工程 • 上一篇    

基于熵权TOPSIS的再生砖混水稳材料多指标综合性能评价

曹芙波1,肖胜先1,王晨霞1,郜德龙1,李敦2,苏天3,秦士杰4,王宇飞5*   

  1. 1.内蒙古科技大学土木工程学院, 内蒙古 包头 014010;2.中建一局集团第五建筑有限公司, 北京 100020;3.山东理工大学建筑工程与空间信息学院, 山东 淄博 255000;4.河海大学河海里尔学院, 江苏 南京 211100;5.天津市房屋质量安全鉴定检测中心有限公司, 天津 300060
  • 发布日期:2025-12-22
  • 作者简介:曹芙波(1976— ),男,湖南衡阳人,教授,硕士生导师,博士,主要研究方向为固废资源化. E-mail:caofubo@139.com. *通信作者简介:王宇飞(1993— ),男,天津人,助理工程师,硕士,主要研究方向为房屋检测与鉴定. E-mail:wyfbear@163.com
  • 基金资助:
    国家自然科学基金资助项目(51868061,52368024);内蒙古自然科学基金资助项目(2022LHMS05011,2024MS05028)

Comprehensive performance evaluation of recycled brick mixed water stabilized material with multiple indicators based on entropy weight TOPSIS

CAO Fubo1, XIAO Shengxian1, WANG Chenxia1, GAO Delong1, LI Dun2, SU Tian3, QIN Shijie4, WANG Yufei5*   

  1. CAO Fubo1, XIAO Shengxian1, WANG Chenxia1, GAO Delong1, LI Dun2, SU Tian3, QIN Shijie4, WANG Yufei5*(1. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
    2. China Construction First Group Fifth Engineering Construction Co., Ltd., Beijing 100020, China;
    3. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, Shandong, China;
    4. Hohai-Lille College, Hohai University, Nanjing 211100, Jiangsu, China;
    5. Tianjin Inspection and Testing Center for Housing Quality &
    Safety Co., Ltd., Tianjin 300060, China
  • Published:2025-12-22

摘要: 以强度最大、刚度适宜为原则确定水泥中粉煤灰最佳质量分数,设置不同水泥和再生砖骨料质量分数以及养护龄期为控制参数,对15种不同配合比下的再生砖混水稳材料(recycled brick mix water stabilizing material, RBSM)进行力学性能研究,采用熵权TOPSIS(technique for order preference by similarity to ideal solution)模型对RBSM的综合性能进行评价,并得出最优参数。结果显示,(1)早期劈裂强度和无侧限抗压强度随着粉煤灰质量分数的增加呈先增后降趋势,在质量分数为10%时达到峰值,抗压回弹模量随着粉煤灰质量分数的增加而增加,最终确定粉煤灰在水泥中的最佳质量分数为10%;(2)RBSM的最优含水率随再生砖骨料质量分数的增加逐渐增大,最大干密度则随之降低;(3)养护初期,RBSM的劈裂强度随再生砖骨料质量分数的增加逐渐降低,无侧限抗压强度则呈先增加后减小的趋势,并在质量分数为50%时达到峰值,随着养护龄期的增加,RBSM的力学强度均有提升;(4)通过熵权TOPSIS理论,得到最佳水泥和再生砖骨料质量分数。最终推荐粉煤灰在水泥中的质量分数为10%、水泥在再生砖混水稳材料中的质量分数为7%、再生砖骨料在再生砖混骨料中的质量分数为50%作为再生砖混水稳材料最佳配比。

关键词: 再生砖混水稳材料, 力学性能, 熵权TOPSIS, 综合性能评价, 最优质量分数

Abstract: The optimal mass fraction of fly ash was determined based on the principles of maximum strength and appropriate stiffness, with cement and recycled brick aggregate mass fractions and curing age set as control parameters. Mechanical properties of 15 recycled brick mix water stabilizing materials(recycled brick mix water stabilizing material, RBSM)under different mix designs were investigated. The comprehensive performance of RBSM was evaluated using the entropy-weighted TOPSIS(technique for order preference by similarity to ideal solution)model, yielding optimal values for each parameter. Results indicate,(1)Early-age splitting tensile strength and unconfined compressive strength first increase then decrease with rising fly ash content, peaking at 10% mass fraction. Compressive rebound modulus increases with fly ash content, confirming 10% as the optimal fly ash content in cement.(2)The optimum moisture content of RBSM gradually increases with the mass fraction of recycled brick aggregate, while the maximum dry density decreases accordingly.(3)During the early curing stage, the splitting strength of RBSM gradually decreases with increasing recycled brick aggregate mass fraction, while the unconfined compressive strength first increases and then decreases, peaking at a mass fraction of 50%. As the curing age increases, the mechanical strength of RBSM improves.(4)Through entropy-weighted TOPSIS theory, optimal mass fractions for cement and recycled brick aggregate were determined. The final recommended optimal mix design for recycled brick-based water-stabilized materials was 10% fly ash mass fraction in cement, 7% cement mass fraction in recycled brick-based water-stabilized material, and 50% recycled brick aggregate mass fraction in recycled brick aggregate.

Key words: recycled brick-concrete water-stabilizing material, mechanical properties, entropy weight TOPSIS, comprehensive performance evaluation, optimal quality score

中图分类号: 

  • TU521
[1] 段珍华, 邓琪, 肖建庄, 等. 再生混凝土冲击磨耗性能与调控方法[J]. 建筑材料学报, 2022, 25(11): 1136-1142. DUAN Zhenhua, DENG Qi, XIAO Jianzhuang, et al. Abrasion resistance of recycled aggregate concrete and its control method[J]. Journal of Building Materials, 2022, 25(11): 1136-1142.
[2] 高文昌, 张欢, 耿悦, 等. 再生混凝土棱柱体与立方体抗压强度关系模型[J]. 建筑材料学报, 2022, 25(11): 1121-1127. GAO Wenchang, ZHANG Huan, GENG Yue, et al. Model for the relationship between prism and cube compressive strengths of recycled aggregate concrete[J]. Journal of Building Materials, 2022, 25(11): 1121-1127.
[3] 李温, 王海龙, 张佳豪, 等. 矸石混合骨料混凝土力学特性及孔隙结构试验研究[J]. 山东大学学报(工学版), 2023, 53(3): 121-127. LI Wen, WANG Hailong, ZHANG Jiahao, et al. Experimental study on mechanical properties and pore structure of gangue mixed aggregate concrete[J]. Journal of Shandong University(Engineering Science), 2023, 53(3): 121-127.
[4] REVILLA-CUESTA V, FIOL F, PERTMAL P, et al. Using recycled aggregate concrete at a precast-concrete plant: a multi-criteria company-oriented feasibility study[J]. Journal of Cleaner Production, 2022, 373: 133873.
[5] 钱如胜, 叶志波, 张云升, 等. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 97-102. QIAN Rusheng, YE Zhibo, ZHANG Yunsheng, et al. Effect of carbon-sequestration recycled coarse-aggregate on the mechanical strength of concrete and its volume stability[J]. Materials Reports, 2025, 39(9): 97-102.
[6] 赵之仲, 柳泓哲, 唐亮, 等. 强化方式与材料对再生粗集料的性能规律分析[J]. 山东大学学报(工学版), 2023, 53(1): 11-17. ZHAO Zhizhong, LIU Hongzhe, TANG Liang, et al. Analysis of the performance law of strengthening methods and materials on recycled coarse aggregate[J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 11-17.
[7] SILETANI A H, ASAYESH S, JAVID A A S, et al. Influence of coating recycled aggregate surface with different pozzolanic slurries on mechanical performance, durability, and micro-structure properties of recycled aggregate concrete[J]. Journal of Building Engineering, 2024, 83: 108457.
[8] 张金喜, 张硕, 苏词, 等. 建筑垃圾全再生半刚性道路基层路用性能研究[J]. 公路, 2023, 68(10): 74-82. ZHANG Jinxi, ZHANG Shuo, SU Ci, et al. Research on performance of road pavement with recycled semi-rigid base course made of full construction waste material[J]. Highway, 2023, 68(10): 74-82.
[9] 周震, 何庆宇, 肖源杰, 等. 建筑固废再生骨料及矿碴粉与水泥联合固化的淤泥强度及微观结构研究[J]. 铁道科学与工程学报, 2025, 22(2): 677-689. ZHOU Zhen, HE Qingyu, XIAO YuanJie, et al. On shear strength and microstructure characteristics of dredged sludge treated synergistically by aggregates recycled from building demolition waste, blast furnace powder, and cement[J]. Journal of Railway Science and Engineering, 2025, 22(2): 677-689.
[10] CAI X, WU K, HUANG W, et al. Application of recycled concrete aggregates and crushed bricks on permeable concrete road base[J]. Road Materials and Pavement Design, 2021, 22(10): 2181-2196.
[11] LUO X, LIU G, ZHANG Y, et al. Estimation of resilient modulus of cement-treated construction and demolition waste with performance-related properties[J]. Construction and Building Materials, 2021, 283: 122107.
[12] ZHANG J, DING L, LI F, et al. Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China[J]. Journal of Cleaner Production, 2020, 255: 120223.
[13] FATEMI S, IMANINASABI R. Performance evaluation of recycled asphalt mixtures by construction and demolition waste materials[J]. Construction and Building Materials, 2016, 120: 450-456.
[14] 陈守开, 白卫峰, 郑永杰, 等. 再生骨料替代率对混凝土单轴压缩力学性能的影响[J]. 应用基础与工程科学学报, 2022, 30(3): 764-775. CHEN Shoukai, BAI Weifeng, ZHENG Yongjie, et al.Effect of replacement rate of recycled aggregate on mechanical properties of concrete under uniaxial compression[J]. Journal of Basic Science and Engineering, 2022, 30(3):764-775.
[15] 张宇, 蒋应军, 范江涛, 等. 掺建筑垃圾水泥稳定碎石力学强度增长规律与预测模型[J]. 硅酸盐通报, 2024, 43(10): 3755-3764. ZHANG Yu, JIANG YingJun, FAN Jiangtao, et al. Mechanical strength growth law and prediction model of cement stabilized macadam with construction waste mechanical strength growth law and prediction model of cement stabilized macadam with construction waste[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3755-3764.
[16] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料:GB/T 25177—2010[S]. 北京:中国标准出版社, 2010.
[17] 中华人民共和国交通运输部. 公路工程利用建筑垃圾技术规范:JTG/T2321—2021[S]. 北京:人民交通出版社, 2021.
[18] 中华人民共和国交通运输部. 公路工程无机结合稳定材料试验规程:JTG 3441—2024[S]. 北京:人民交通出版社, 2024.
[19] 张阳, 田绍强, 马涛, 等. 固废基地聚物稳定碎石力学性能和干燥收缩特性研究[J]. 中国公路学报, 2023, 36(12): 120-130. ZHANG Yang, TIAN Shaoqiang, MA Tao, et al. Mechanical performance and drying shrinkage characteristics of solid waste based geopolymer-stabilized macadam[J]. China Journal of Highway and Transport, 2023, 36(12): 120-130.
[20] 陈祥花, 劳国威, 郑述芳, 等. 粉煤灰掺量对全再生粗骨料自密实混凝土工作性能的影响[J]. 硅酸盐通报, 2025, 44(2): 531-539. CHEN Xianghua, LAO Guowei, ZHENG Shufang, et al. Effect of fly ash content on workability of fully recycled coarse aggregate self-compacting concrete[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(2): 531-539.
[21] BENTZ D P, SNYDER K A. Protected paste volume in concrete: extension to internal curing using saturated lightweight fine aggregate[J]. Cement and Concrete Research, 1999, 29(11): 1863-1867.
[22] 刘超, 余伟航, 刘化威, 等. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031. LIU Chao, YU Weihang, LIU Huawei, et al. Study on mechanical properties and failure mechanism of recycled brick aggregate concrete[J]. Materials Reports, 2021,35(13):13025-13031.
[23] 孔德玉, 任佳栋, 沈海强, 等. 离散元设计嵌挤密实级配对再生砖混骨料水稳料性能的影响[J]. 浙江工业大学学报, 2023, 51(1): 1-6. KONG Deyu, REN Jiadong, SHEN Haiqiang, et al. Influence of interlock-dense gradation designed by discrete element method on properties of cement stabilized recycled brick-concrete aggregates[J]. Journal of Zhejiang University of Technology, 2023, 51(1):1-6.
[24] 朱超, 赵文韬, 余伟航, 等. 再生砖混骨料混凝土基本力学性能与本构模型[J]. 复合材料学报, 2024, 41(2): 898-910. ZHU Chao, ZHAO Wentao, YU Weihang, et al. Basic mechanical properties and constitutive model of recycled brick-concrete aggregate[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 898-910.
[25] 艾长发, 黄恒伟, RAHMAN A, 等. 基于熵权的TOPSIS钢桥面防水黏结材料组合体系优选分析[J]. 中国公路学, 2020, 33(3): 53-63. AI Changfa, HUANG Hengwei, RAHMAN A, et al. Optimum selection analysis of waterproof bonding materials for steel bridge deck based using entropy weight-TOPSIS[J]. China Journal of Highway and Transport, 2020, 33(3): 53-63.
[26] 中华人民共和国交通运输部. 公路路面基层施工技术细则: JTG/T F20—2015[S]. 北京: 人民交通出版社, 2015.
[27] 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准: GB/T 51366—2019[S]. 北京:中国建筑工业出版社, 2019.
[1] 薛刚,刘秋雨,董伟,李京军. 冲击荷载下钢渣细骨料混凝土力学特性及本构关系[J]. 山东大学学报 (工学版), 2025, 55(4): 108-117.
[2] 薛刚,邬松,董伟. 碳化钢渣细骨料混凝土本构关系[J]. 山东大学学报 (工学版), 2025, 55(2): 97-105.
[3] 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114.
[4] 潘旭东,李鸿钊,郭焱旭,刘人太,何万里. 海洋环境下注浆加固体的力学性能演化[J]. 山东大学学报 (工学版), 2023, 53(5): 112-120.
[5] 庄绪彩,孙希滕,张宁,田源,殷敬敬,宋修广. 基于主客观组合赋权评价技术的雷视一体机安装方案优选[J]. 山东大学学报 (工学版), 2023, 53(4): 37-47.
[6] 王晓明,朱传超,许航,贺耀北,韩昭,李兆辉,黄春杨. 无内腹板式钢索塔锚固区的力学性能分析[J]. 山东大学学报 (工学版), 2023, 53(3): 50-59.
[7] 赵之仲,柳泓哲,唐亮,杨振宇,王日升. 强化方式与材料对再生粗集料的性能规律分析[J]. 山东大学学报 (工学版), 2023, 53(1): 11-17.
[8] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[9] 杨炎,王威强,潘路,宋明大. 服役后16Mn管材应变时效的自动球压痕测试[J]. 山东大学学报(工学版), 2017, 47(4): 64-69.
[10] 苏成功,刘燕,王威强, 王玉花. 压痕对不锈钢材料表面残余应力的影响[J]. 山东大学学报(工学版), 2017, 47(1): 90-96.
[11] 李明,朱召泉,刘琳. 混凝土压缩试验的改善及动态损伤[J]. 山东大学学报(工学版), 2017, 47(1): 68-75.
[12] 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126.
[13] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[14] 张宏博,解全一,岳红亚,孟庆宇. 掺合镀铜织物纤维电磁屏蔽砂浆性能研究[J]. 山东大学学报(工学版), 2016, 46(1): 56-61.
[15] 胡顺鹏1,赵洪石2,王冠聪2,曹成波1*,刘宏2*,李文波1,杨晓宇1. 一种胶原支架材料的结构与性能表征[J]. 山东大学学报(工学版), 2010, 40(4): 67-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!