山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 142-150.doi: 10.6040/j.issn.1672-3961.0.2024.178
• 土木工程 • 上一篇
徐润1,刘志鲲2,孙建秀1,于洋3,张常勇1,刘亚珍2*,岳红亚1,张宏博2
XU Run1, LIU Zhikun2, SUN Jianxiu1, YU Yang3, ZHANG Changyong1, LIU Yazhen2*, YUE Hongya1, ZHANG Hongbo2
摘要: 为解决碎石类散体桩加固软土地基时土体侧向约束能力不足,发生扩径、桩顶鼓胀破坏等工程问题,提出废旧轮胎格栅环向约束桩复合地基技术。通过考虑加筋类型、桩径及垫层形式的变化,开展单桩及复合地基承载试验,测试得到荷载-位移曲线;基于不同的破坏模式,提出散体桩单桩承载力计算方法,并进行准确性验证。结果表明:相较于普通散体桩在较小位移条件下即达到极限破坏状态,环向约束桩极限承载力明显提高;对比土工格栅环向约束桩,轮胎格栅约束桩荷载-位移曲线未出现明显的破坏点,表明其径向约束能力更强;对比不同桩径条件下的环向约束桩荷载-位移曲线,可知适当增大桩径对于提高桩体承载力效果显著,而设置碎石垫层可提升桩体承载力。研究成果对于该类型桩基的推广应用、提高固废资源循环利用具有重要的工程应用价值。
中图分类号:
| [1] GHAZAVI M, AFSHAR J N. Bearing capacity of geosynthetic encased stone columns[J]. Geotextiles and Geomembranes, 2013, 38(38): 26-36. [2] OUYANG F, ZHANG J J, LIAOW M, et al. Characteristics of the stress and deformation of geosynthetic-encased stone column composite ground based on large-scale model tests[J]. Geosynthetics International, 2017, 24(3): 242-254. [3] 莫海钊. 悬浮筋箍碎石桩复合地基承载变形机理研究[D]. 广州: 广州大学, 2020: 56. MO Haizhao. Study on bearing deformation mechanism of composite foundation with floating geosynthetic encased stone columns[D]. Guangzhou: Guangzhou University, 2020: 56. [4] ALKHORSHID N R, ARAUJO G L S, PALMEIRA E M, et al. Large-scale load capacity tests on a geosynthetic encased column[J]. Geotextiles and Geomembranes, 2019, 47(5): 632-641. [5] 闫力伟, 张建经, 王志佳, 等. 包裹碎石桩在粉质黏土地基中的承载特性研究[J]. 科学技术与工程, 2023, 23(18): 7924-7934. YAN Liwei, ZHANG Jianjing, WANG Zhijia, et al. Model test and numerical simulation study of silty clay ground reinforced by geosynthetic encased stone columns[J]. Science Technology and Engineering, 2023, 23(18): 7924-7934. [6] THAKUR A, RAWAT S, GUPTA A K. Experimental and numerical modelling of group of geosynthetic-encased stone columns[J]. Innovative Infrastructure Solutions, 2020, 6(1): 12. [7] HOSSEINPOUR I. Three-dimensional numerical analysis of embankment overlying geotextile-encased columns with granular platform[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2024, 48(3): 1641-1653. [8] NAYAK S, BALAJI M, PREETHAM H K. A study on the behaviour of stone columns in a layered soil system[J]. Transportation Infrastructure Geotechnology, 2020, 7(1): 85-102. [9] 李丽华, 崔飞龙, 肖衡林, 等. 轮胎与格室加筋路堤性能及承载力研究[J]. 岩土工程学报, 2017, 39(1): 81-88. LI Lihua, CUI Feilong, XIAO Henglin, et al. Performance and bearing capacity of embankments reinforced with waste tires and geocells[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 81-88. [10] 袁雪峰. 基于TDA复合土的废旧轮胎条带加筋路堤承载特性研究[D]. 济南:山东大学, 2021: 1. YUAN Xuefeng. Study on the bearing characteristics of reinforced embankment with scrap tire strips embedded in TDA composite soil[D]. Jinan: Shandong University, 2021: 1. [11] YADAV J S, TIWARI S K. Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement[J]. Applied Clay Science, 2017, 149: 97-110. [12] YADAV J S, TIWARI S K. The impact of end-of-life tires on the mechanical properties of fine-grained soil: a review[J]. Environment, Development and Sustainability, 2019, 21(2): 485-568. [13] 张林. 黑色污染绿处理[J]. 中国公路, 2022(4): 34-35. ZHANG Lin. Black pollution green treatment[J]. China Highway, 2022(4): 34-35. [14] 江健宏,舒晓锐,刘志鲲,等.废旧轮胎碎片(TDA)复合填料中竖向锚定板承载特性[J]. 山东大学学报(工学版), 2023, 53(6): 92-99. JANG Jianhong, SHU Xiaorui, LIU Zhikun, et al. Bearing characteristics of vertical plate anchor in TDA-soil mixtures[J]. Joumal of Shandong University(Engineering Science), 2023, 53(6): 92-99. [15] 孙杰, 张宏博, 程钰, 等. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报(工学版), 2023, 53(1): 49-59. SUN Jie, ZHANG Hongbo, CHENG Yu, et al. Bearing characteristics of reinforced sand slope with scrap tire strips and TDA backfills[J]. Journal of Shandong University(Engineering Science), 2023, 53(1): 49-59.[16] 李晓亮, 刘源, 李玉鑫, 等. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报(工学版), 2021, 51(4): 54-60. LI Xiaoliang, LIU Yuan, LI Yuxin, et al. The pullout features of reinforced strips of waste tires in sandy media[J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 54-60. [17] 中华人民共和国交通部. 公路土工试验规程: JTG E40—2007[S]. 北京: 人民交通出版社, 2007. [18] 中华人民共和国住房和城乡建设部. 复合地基技术规范: GB/T 50783—2012[S]. 北京: 中国计划出版社, 2012. [19] 郑光俊, 盛春花, 李振华, 等. CFG桩复合地基新型嵌入式褥垫层桩-土应力比改善特性[J]. 长江科学院院报, 2023, 40(12): 133-139. ZHENG Guangjun, SHENG Chunhua, LI Zhenhua, et al. Improvement effect of pile-soil stress ratio in CFG pile composite foundation with newly embedded cushion[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(12): 133-139. [20] TAVAKOLI MEHRJARDI G, KARGAR M. Experimental investigation on the applicability of a novel tire-grid used in slope stabilization under repeated loads[J]. International Journal of Geosynthetics and Ground Engineering, 2023, 9(6): 66. |
| [1] | 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114. |
| [2] | 江健宏,舒晓锐,刘志鲲,孙杰,荆树举,张宏博. 废旧轮胎碎片(TDA)复合填料中竖向锚定板承载特性[J]. 山东大学学报 (工学版), 2023, 53(6): 92-99. |
| [3] | 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59. |
|
||