您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 50-59.doi: 10.6040/j.issn.1672-3961.0.2022.396

• 岩土工程稳定性分析与加固专题 • 上一篇    下一篇

无内腹板式钢索塔锚固区的力学性能分析

王晓明1,朱传超2,许航3,贺耀北4,韩昭5,李兆辉2,黄春杨2   

  1. 1.旧桥检测与加固技术交通行业重点实验室(西安), 陕西 西安 710064;2.长安大学公路学院, 陕西 西安 710064;3.中铁城建集团北京工程有限公司, 北京 100024;4.湖南省交通规划勘察设计院有限公司, 湖南 长沙 410008;5.山东高速建设管理集团有限公司, 山东 济南 250014
  • 出版日期:2023-06-20 发布日期:2023-07-07
  • 作者简介:王晓明(1983— ),男,山西朔州人,博士,教授,主要研究方向为桥梁安全评估与工程控制研究. E-mail: wxm@chd.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52178104);长安大学中央高校基本科研业务费专项资金资助项目(300102212905)

Analysis of mechanical properties of anchorage zone of steel cable tower without internal web plate

WANG Xiaoming1, ZHU Chuanchao2, XU Hang3, HE Yaobei4, HAN Zhao5, LI Zhaohui2, HUANG Chunyang2   

  1. 1.Key Laboratory of Bridge Detection Reinforcement Technology Ministry of Communications, Xi'an 710064, Shaanxi, China;
    2.School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China;
    3.China Railway Urban Construction Group Beijing Engineering Co., Ltd., Beijing 100024, China;
    4.Hunan Provincial Communications Planning, Survey &
    Design Institute Co., Ltd., Changsha 100024, Hunan, China;
    5.Shandong Expressway Construction Management Group Co., Ltd., Jinan 250014, Shandong, China
  • Online:2023-06-20 Published:2023-07-07

摘要: 为了适应空间曲线塔柱的造型与受力,空间错位布设的拉索锚梁需要舍弃内腹板,增加自身长度直接焊接于索塔壁板。由于缺失了内腹板的对拉锚固作用,使得无内腹板式钢索塔锚固区的传力机理、承载能力具有明显特殊性。通过数值模拟方法对无内腹板式索塔锚固区进行弹塑性全过程分析,并用模型试验数据进行对比验证,研究无内腹板式索塔锚固区的力学性能并进行优化设计。结果表明,不设内腹板明显降低了拉索锚梁的刚度,无内腹板式拉索锚梁结构的极限承载力为11 130 kN,达2.8倍设计荷载,安全储备充裕,且未出现扭转现象。索力主要由拉索锚梁的支承板N1进行传递,支承板N1与索塔壁板间的焊缝是关键传力部位,可实现71%的索力传递,但此处易出现应力集中现象。增加边跨侧拉索锚梁B17支承板N1的厚度可改善结构的受力性能,有效减少应力集中。

关键词: 索塔锚固区, 桥塔节段, 拉索锚梁, 内腹板, 对拉锚固作用, 力学性能

中图分类号: 

  • U448.27
[1] 张万志,刘华,张峰,等.斜拉桥塔梁同步施工过程的力学特性[J].山东大学学报(工学版),2016,46(6):120-126. ZHANG Wanzhi, LIU Hua, ZHANG Feng, et al. Mechanical properties of tower and beam synchronous construction of cable-stayed bridge[J]. Journal of Shandong University(Engineering Science), 2016, 46(6): 120-126.
[2] 董俊,曾永平,张金,等.超250 m级高塔铁路斜拉桥减隔震设计参数影响分析[J].铁道科学与工程学报,2022,19(7):1963-1976. DONG Jun, ZENG Yongping, ZHANG Jin, et al. Influence analysis of vibration isolation design parameters of over 250 m high tower railway cable-stayed bridge[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1963-1976.
[3] 牛祥恒,翟晓亮.大跨度斜拉桥索塔锚固形式对比分析[J].公路,2021,66(3):97-100. NIU Xiangheng, ZHAI Xiaoliang. Comparative analysis of cable tower anchorage forms for long span cable-stayed bridges[J]. Highway, 2021, 66(3): 97-100.
[4] ZHONG Jian, WU Qiaofei, ZHU Yuntao, et al. Full-scale segment model test and performance improvement scheme of cable-pylon anchorage zone for cable-stayed bridge[J]. Case Studies in Construction Materials, 2023, 18(9):119-133.
[5] 李建民.大跨度斜拉桥索塔及锚固区受力分析[J].黑龙江交通科技,2022,45(7):110-112. LI Jianmin. Stress analysis of cable tower and anchorage area of long-span cable-stayed bridge[J]. Communi-cations Science and Technology Heilongjiang, 2022, 45(7): 110-112.
[6] WEI Qifen. Parametric design and application of steel anchor box for main girder of long span cable-stayed bridge[J]. IOP Conference Series: Materials Science and Engineering, 2018, 392(6):36-43.
[7] LI Shian, ZHANG Zhihui, LI Wei, et al. Spatial mechanical behavior research of cable anchorage zone of special-shaped steel box concrete tower[J]. Applied Mechanics and Materials, 2013, 2574(368/369/370):1762-1768.
[8] CHENG Bin, WANG Jianlei, LI Chun. Compression behavior of perforated plates in steel tower anchorage zones of cable-stayed bridges[J]. Journal of Constructional Steel Research, 2013, 90:72-84.
[9] 朱秋颖,胡晓红,韩治忠,等.钢桥塔与塔吊联合体系风荷载效应研究[J].上海公路,2022(2):26-29. ZHU Qiuying, HU Xiaohong, HAN Zhizhong, et al. Study on wind load effect of combined system of steel bridge tower and tower crane[J]. Shanghai Highways, 2022(2):26-29.
[10] 赵世超,李盘山,欧光鲲,等.大跨度自锚式悬索桥索塔局部应力分析[J].公路交通科技,2021,38(增刊1):9-17. ZHAO Shichao, LI Panshan, OU Guangkun, et al. Analysis on local stress of pylon of long-span self-anchored suspension bridge[J]. Journal of Highway and Transportation Research and Development, 2021, 38(Suppl.1): 9-17.
[11] 陈辉.斜拉桥索塔锚固区结构形式发展综述[J].赤子(上中旬),2014(11):360-362. CHEN Hui. Summary of the development of cable-stayed bridge pylon anchorage zone structure[J]. Spiritual Leaders, 2014(11): 360-362.
[12] 任飞. 锚管式结构锚固区受力行为分析[J]. 上海公路, 2020(3): 43-47. REN Fei. Analysis of stress behavior in the anchorage zone of anchor tube structure[J]. Shanghai Highways, 2020(3): 43-47.
[13] 华晓勇. 钢桥塔索辅梁桥锚固区新型钢锚箱受力分析[J]. 公路, 2020, 65(1): 75-81. HUA Xiaoyong. Stress analysis of new type steel anchor box in anchorage zone of steel bridge tower cable auxiliary beam bridge[J]. Highway, 2020, 65(1): 75-81.
[14] ZHOU Xuhong, ZHANG Xigang. Thoughts on the development of bridge technology in China[J]. Engin-eering, 2019, 5(6): 1120-1130.
[15] 陆春阳, 吴冲, 曾明根,等.火炬桥异型钢索塔局部应力分析[J]. 计算机辅助工程, 2007,16(4): 27-30. LU Chunyang, WU Chong, ZENG Minggen, et al. Local stress analysis on abnormal steel pylon of torch bridge[J]. Computer Aided Engineering, 2007, 16(4): 27-30.
[16] 崔楠楠. 斜拉桥预应力混凝土索塔锚固区受力性能与设计方法研究[D]. 广州: 华南理工大学, 2016. CUI Nannan. Research on static behaviour and design approach for pc pylon anchorage zone of cable-stayed bridge[D]. Guangzhou: South China University of Technology, 2016.
[17] 王幸业, 许航. 聊城中华路北延跨徒骇河特大桥钢描箱承载力试验及疲劳数据分析项目[R]. 上海: 同济大学, 2021. WANG Xingye, XU Hang. Bearing capacity test and fatigue data analysis project of steel tracing box of tuhaihe super large bridge with north extension of zhonghua road in liaocheng[R]. Shanghai: Tongji University, 2021.
[18] 张清华,李乔. 锚箱式索梁锚固结构受力特性研究Ⅱ:传力机理[J]. 土木工程学报, 2012, 45(9): 100-107. ZHANG Qinghua, LI Qiao. Mechanical features of cable-girder anchorage for cable-stayed bridges with steel box girders Ⅱ: load transfer mechanism[J]. China Civil Engineering Journal, 2012, 45(9): 100-107.
[1] 赵之仲,柳泓哲,唐亮,杨振宇,王日升. 强化方式与材料对再生粗集料的性能规律分析[J]. 山东大学学报 (工学版), 2023, 53(1): 11-17.
[2] 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110.
[3] 杨炎,王威强,潘路,宋明大. 服役后16Mn管材应变时效的自动球压痕测试[J]. 山东大学学报(工学版), 2017, 47(4): 64-69.
[4] 李明,朱召泉,刘琳. 混凝土压缩试验的改善及动态损伤[J]. 山东大学学报(工学版), 2017, 47(1): 68-75.
[5] 苏成功,刘燕,王威强, 王玉花. 压痕对不锈钢材料表面残余应力的影响[J]. 山东大学学报(工学版), 2017, 47(1): 90-96.
[6] 张万志,刘华,张峰,高磊,姚晨,刘冠之. 斜拉桥塔梁同步施工过程的力学特性[J]. 山东大学学报(工学版), 2016, 46(6): 120-126.
[7] 彭元诚,董旭,梁娜,邓振全. 北盘江新型空腹式连续刚构桥角隅节点模型试验研究[J]. 山东大学学报(工学版), 2016, 46(6): 113-119.
[8] 张宏博,解全一,岳红亚,孟庆宇. 掺合镀铜织物纤维电磁屏蔽砂浆性能研究[J]. 山东大学学报(工学版), 2016, 46(1): 56-61.
[9] 胡顺鹏1,赵洪石2,王冠聪2,曹成波1*,刘宏2*,李文波1,杨晓宇1. 一种胶原支架材料的结构与性能表征[J]. 山东大学学报(工学版), 2010, 40(4): 67-71.
[10] 孙丽莉, 贾玉玺, 孙胜, 马凤德.

界面强度对纤维复合材料破坏及力学性能的影响

[J]. 山东大学学报(工学版), 2009, 39(2): 101-103.
[11] 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95.
[12] 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 .
[13] 孙军龙,张卧波,邓建新,刘长霞 . B4C/TiO2/Al复合材料制备及其性能[J]. 山东大学学报(工学版), 2006, 36(6): 6-09 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .