山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 108-117.doi: 10.6040/j.issn.1672-3961.0.2024.025
• 土木工程 • 上一篇
薛刚,刘秋雨*,董伟,李京军
XUE Gang, LIU Qiuyu*, DONG Wei, LI Jingjun
摘要: 为研究钢渣细骨料混凝土(steel slag fine aggregate concrete, SSC)在冲击荷载下的力学性能,利用直径为100 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)对普通混凝土和钢渣细骨料混凝土(钢渣取代混凝土中河砂的体积分数分别为10%、20%和30%)进行轴向冲击压缩试验,研究钢渣体积分数及应变率对SSC的动态抗压强度、冲击韧性、动态增强因子(dynamic increase factor, DIF)Fdi及破坏形态的影响,在Z-W-T方程的基础上修正,得到适用于钢渣混凝土的动态损伤本构方程。结果表明:SSC具有明显的应变率效应,即钢渣体积分数相同时,随着应变率的提高,SSC动态抗压强度、Fdi、冲击韧性和破坏程度均逐渐增加;钢渣的掺入对混凝土在冲击荷载下的力学行为产生一定影响,在应变率相似时,钢渣体积分数从0增加到30%时,SSC动态抗压强度和冲击韧性呈上升趋势,但上升幅度相对较小;掺入钢渣后,Fdi明显减小;通过对试验应力-应变曲线进行拟合可知,考虑损伤演化的Z-W-T方程可很好地描述SSC的动态应力-应变关系。
中图分类号:
| [1] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33. HE Liang, ZHAN Chengyang, LÜ Songtao, et al. The current application status of steel slag asphalt mixture[J]. Journal of Transportation Engineering, 2020, 20(2): 15-33. [2] LIU G, TANG Y J, WANG J Y. Effects of carbonation degree of semi-dry carbonated converter steel slag on the performance of blended cement mortar: reactivity, hydration, and strength[J]. Journal of Building Engineering, 2023, 63: 105529. [3] REHMAN S, IQBAL S, ALI A. Combined influence of glass powder and granular steel slag on fresh and mechanical properties of self-compacting concrete[J]. Construction and Building Materials, 2018, 178: 153-160. [4] DONG Q, WANG G T, CHEN X Q, et al. Recycling of steel slag aggregate in portland cement concrete: an overview[J]. Journal of Cleaner Production, 2021, 282: 124447. [5] RASHAD ALAA M. Behavior of steel slag aggregate in mortar and concrete: a comprehensive overview[J]. Journal of Building Engineering, 2022, 53: 104536. [6] ANASTASIOUS E, FIKIKAS K G, STEFANIDOU M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag[J]. Construction and Building Materials, 2014, 50: 154-161. [7] LAI M H, ZOU J J, YAO B Y, et al. Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate[J]. Construction and Building Materials, 2021,277: 22269. [8] GOU Y C, XIE J H, ZHAO J B, et al. Utilization of unprocessed steel slag as fine aggregate in normal and high-strength concrete[J]. Construction and Building Materials, 2019, 204: 41-49. [9] QASRAWI H, SHALABI F, ASI I, Use of low CaO unprocessed steel slag in concrete as fine aggregate[J]. Construction and Building Materials, 2009, 23(2): 1118-1125. [10] RAHMAWATI A, SAPUTRO I. The effects of substitution of the natural sand by steel slag in the properties of eco-friendly concrete with the 1∶2∶3 ratio mixing method[C] // IOP Conference Series: Materials Science and Engineering, Surakarta, Indonesia: IOP Publishing, 2018: 012097. [11] YU X, TAO Z, SONG T Y, et al. Performance of concrete made with steel slag and waste glass[J]. Construction and Building Materials, 2016, 114: 737-746. [12] WANG Z H, BAI E, LUO X, et al. Comparative study on toughness evaluation indicators of nano-concrete under impact load[J]. Structures, 2023, 54: 1803-1814. [13] XIE H Z, YANG L Y, ZHU H N, et al. Energy dissipation and fractal characteristics of basalt fiber reinforced concrete under impact loading[J]. Structures, 2022, 46: 654-663. [14] WANG Z L, LIU Y S, SHEN R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5): 811-819. [15] ZHANG H, WANG B, XIE A, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154-167. [16] GUO Y C, XIE J H, ZHENG W Y, et al. Effects of steel slag as fine aggregate on static and impact behaviours of concrete[J]. Construction and Building Materials, 2018, 192: 194-201. [17] 全国钢标准化技术委员会. 钢渣稳定性试验方法:GB/T 24175—2009[S]. 北京:中国标准出版社,2009. [18] 中国建筑材料联合会. 建设用卵石、碎石:GB/T 14685—2022[S]. 北京:中国标准出版社,2022. [19] 中国建筑材料联合会. 建设用砂:GB/T 14684—2022[S]. 北京:中国标准出版社,2022. [20] 卢芳云, 陈荣. 霍普金森杆实验技术[M]. 北京:科学出版社, 2013. [21] WELLS A. Impact strength of materials[J]. International Metallurgical Reviews, 1972, 17(1): 264-265. [22] XUE G, FU Q, XUE S, et al. Macroscopic mechanical properties and microstructure characteristics of steel slag fine aggregate concrete[J]. Journal of Building Engineering, 2022, 56: 104742. [23] BAI Y L, YAN Z W, JIA J F, et al. Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests[J]. Composite Structures, 2021, 259: 113233. [24] 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3): 261-270. GAO Guangfa. Strain rate strengthening law of dynamic compressive strength of concrete materials[J]. Journal of High Pressure Physics, 2017, 31(3): 261-270. [25] POON C S, SHUI Z H, LAM L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials, 2004, 18(6): 461-468. [26] XIAO S H. Dynamic properties of PVA short fiber reinforced low-calcium fly ash-slag geopolymer under an SHPB impact load[J]. Journal of Building Engineering, 2021, 44: 103220. [27] 陈江瑛, 王礼立. 水泥砂浆的率型本构方程[J]. 宁波大学学报(理工版), 2000(2): 1-5. CHEN Jiangying, WANG Lili. The rate type constitutive equation of cement mortar[J]. Journal of Ningbo University(Science and Engineering Edition), 2000(2): 1-5. [28] 王礼立, 董新龙, 孙紫建. 高应变率下计及损伤演化的材料动态本构行为[J]. 爆炸与冲击, 2006(3): 193-198. WANG Lili, DONG Xinlong, SUN Zijian. Dynamic constitutive behavior of materials considering damage evolution under high strain rates[J]. Explosion and Impact, 2006(3): 193-198. |
| [1] | 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113. |
| [2] | 薛刚,邬松,董伟. 碳化钢渣细骨料混凝土本构关系[J]. 山东大学学报 (工学版), 2025, 55(2): 97-105. |
| [3] | 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121. |
| [4] | 张启懿,邹春霞,郭晓松,宋育鑫,郑建庭,赵溢. NaOH改善粉煤灰混凝土微结构及抗风蚀-冻融耐久性能[J]. 山东大学学报 (工学版), 2024, 54(4): 131-140. |
| [5] | 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114. |
| [6] | 王鹏, 黄成, 赵国浩, 张峰. 混凝土单箱三室箱梁水化热温度场及应变场模型试验[J]. 山东大学学报 (工学版), 2024, 54(1): 109-122. |
| [7] | 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130. |
| [8] | 王旭昊,刘倩倩,李虎成,李程,李鹏,凌一峰. 装配式水泥混凝土路面板空心形式研究与优化[J]. 山东大学学报 (工学版), 2022, 52(4): 139-150. |
| [9] | 刘文杰,杨学英,张波,范志鑫,李成新,杨惠茗,李景龙. 含裂隙无腹筋梁的抗剪承载能力[J]. 山东大学学报 (工学版), 2022, 52(3): 42-50. |
| [10] | 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 84-90. |
| [11] | 周术明,颜东煌. 基于裂缝参数的钢筋混凝土预裂梁刚度试验研究[J]. 山东大学学报 (工学版), 2021, 51(1): 53-59. |
| [12] | 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49. |
| [13] | 林超,张程林,王勇. 预应力中空棒构件设计与力学特性[J]. 山东大学学报 (工学版), 2020, 50(5): 26-32. |
| [14] | 刘协,李国华,王明,马池帅. “套接式H型”缓冲器在超大型竖井混凝土施工中的应用[J]. 山东大学学报(工学版), 2017, 47(2): 37-40. |
| [15] | 秦子鹏,田艳,李刚,马玉薇,刘乐,张金剑. BFRP层数对加固钢筋混凝土梁抗弯性能的影响[J]. 山东大学学报(工学版), 2017, 47(1): 76-83. |
|
||