您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (4): 108-117.doi: 10.6040/j.issn.1672-3961.0.2024.025

• 土木工程 • 上一篇    

冲击荷载下钢渣细骨料混凝土力学特性及本构关系

薛刚,刘秋雨*,董伟,李京军   

  1. 内蒙古科技大学土木工程学院, 内蒙古 包头 014010
  • 发布日期:2025-08-31
  • 作者简介:薛刚(1968— ),男,教授,硕士生导师,博士,主要研究方向为新型建筑材料. E-mail: xuegang-2008@126.com. *通信作者简介:刘秋雨(1999— ),男,硕士研究生,主要研究方向为新型建筑材料. E-mail: liuqiuyu251@126.com
  • 基金资助:
    国家自然科学基金资助项目(52168032);2023年度内蒙古自治区直属高校基本科研业务费资助项目(2023RCTD025)

Mechanical properties and constitutive relationship of steel slag fine aggregate concrete under impact load

XUE Gang, LIU Qiuyu*, DONG Wei, LI Jingjun   

  1. XUE Gang, LIU Qiuyu*, DONG Wei, LI Jingjun(College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
  • Published:2025-08-31

摘要: 为研究钢渣细骨料混凝土(steel slag fine aggregate concrete, SSC)在冲击荷载下的力学性能,利用直径为100 mm的分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)对普通混凝土和钢渣细骨料混凝土(钢渣取代混凝土中河砂的体积分数分别为10%、20%和30%)进行轴向冲击压缩试验,研究钢渣体积分数及应变率对SSC的动态抗压强度、冲击韧性、动态增强因子(dynamic increase factor, DIF)Fdi及破坏形态的影响,在Z-W-T方程的基础上修正,得到适用于钢渣混凝土的动态损伤本构方程。结果表明:SSC具有明显的应变率效应,即钢渣体积分数相同时,随着应变率的提高,SSC动态抗压强度、Fdi、冲击韧性和破坏程度均逐渐增加;钢渣的掺入对混凝土在冲击荷载下的力学行为产生一定影响,在应变率相似时,钢渣体积分数从0增加到30%时,SSC动态抗压强度和冲击韧性呈上升趋势,但上升幅度相对较小;掺入钢渣后,Fdi明显减小;通过对试验应力-应变曲线进行拟合可知,考虑损伤演化的Z-W-T方程可很好地描述SSC的动态应力-应变关系。

关键词: 混凝土, 钢渣混凝土, 分离式霍普金森压杆, 动态力学性能, 本构关系

Abstract: In order to study the mechanical properties of steel slag fine aggregate concrete(SSC)under impact loading, axial impact compression tests of ordinary concrete and steel slag fine aggregate concrete with 10%, 20%, and 30% volume replacement ratios were carried out by using the 100 mm split Hopkinson pressure bar(SHPB). The effects of steel slag replacement ratio and strain rate on the dynamic compressive strength, impact toughness, dynamic increase factor(DIF)Fdi, and failure mode of SSC were investigated. Based on the Z-W-T equation, a modified dynamic damage constitutive equation suitable for steel slag concrete was obtained. The results showed that SSC had a significant strain rate effect, with the same amount of steel slag, the dynamic compressive strength, Fdi, impact toughness, and failure severity of SSC gradually increased with the growth of strain rate. The mechanical behavior under impact loading was changed by the addition of steel slag. When the strain rate was similar, the dynamic compressive strength and impact toughness of SSC showed an upward trend when the steel slag content increased from 0 to 30%, but the increase was relatively small, while the Fdi value significantly decreased after the addition of steel slag. By fitting the experimental stress-strain curve, it could be concluded that the Z-W-T equation considering damage evolution could effectively describe the dynamic stress-strain relationship of SSC.

Key words: concrete, steel slag concrete, split Hopkinson compression bar, dynamic mechanical properties, constitutive model

中图分类号: 

  • TU528
[1] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33. HE Liang, ZHAN Chengyang, LÜ Songtao, et al. The current application status of steel slag asphalt mixture[J]. Journal of Transportation Engineering, 2020, 20(2): 15-33.
[2] LIU G, TANG Y J, WANG J Y. Effects of carbonation degree of semi-dry carbonated converter steel slag on the performance of blended cement mortar: reactivity, hydration, and strength[J]. Journal of Building Engineering, 2023, 63: 105529.
[3] REHMAN S, IQBAL S, ALI A. Combined influence of glass powder and granular steel slag on fresh and mechanical properties of self-compacting concrete[J]. Construction and Building Materials, 2018, 178: 153-160.
[4] DONG Q, WANG G T, CHEN X Q, et al. Recycling of steel slag aggregate in portland cement concrete: an overview[J]. Journal of Cleaner Production, 2021, 282: 124447.
[5] RASHAD ALAA M. Behavior of steel slag aggregate in mortar and concrete: a comprehensive overview[J]. Journal of Building Engineering, 2022, 53: 104536.
[6] ANASTASIOUS E, FIKIKAS K G, STEFANIDOU M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag[J]. Construction and Building Materials, 2014, 50: 154-161.
[7] LAI M H, ZOU J J, YAO B Y, et al. Improving mechanical behavior and microstructure of concrete by using BOF steel slag aggregate[J]. Construction and Building Materials, 2021,277: 22269.
[8] GOU Y C, XIE J H, ZHAO J B, et al. Utilization of unprocessed steel slag as fine aggregate in normal and high-strength concrete[J]. Construction and Building Materials, 2019, 204: 41-49.
[9] QASRAWI H, SHALABI F, ASI I, Use of low CaO unprocessed steel slag in concrete as fine aggregate[J]. Construction and Building Materials, 2009, 23(2): 1118-1125.
[10] RAHMAWATI A, SAPUTRO I. The effects of substitution of the natural sand by steel slag in the properties of eco-friendly concrete with the 1∶2∶3 ratio mixing method[C] // IOP Conference Series: Materials Science and Engineering, Surakarta, Indonesia: IOP Publishing, 2018: 012097.
[11] YU X, TAO Z, SONG T Y, et al. Performance of concrete made with steel slag and waste glass[J]. Construction and Building Materials, 2016, 114: 737-746.
[12] WANG Z H, BAI E, LUO X, et al. Comparative study on toughness evaluation indicators of nano-concrete under impact load[J]. Structures, 2023, 54: 1803-1814.
[13] XIE H Z, YANG L Y, ZHU H N, et al. Energy dissipation and fractal characteristics of basalt fiber reinforced concrete under impact loading[J]. Structures, 2022, 46: 654-663.
[14] WANG Z L, LIU Y S, SHEN R F. Stress-strain relationship of steel fiber-reinforced concrete under dynamic compression[J]. Construction and Building Materials, 2008, 22(5): 811-819.
[15] ZHANG H, WANG B, XIE A, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154-167.
[16] GUO Y C, XIE J H, ZHENG W Y, et al. Effects of steel slag as fine aggregate on static and impact behaviours of concrete[J]. Construction and Building Materials, 2018, 192: 194-201.
[17] 全国钢标准化技术委员会. 钢渣稳定性试验方法:GB/T 24175—2009[S]. 北京:中国标准出版社,2009.
[18] 中国建筑材料联合会. 建设用卵石、碎石:GB/T 14685—2022[S]. 北京:中国标准出版社,2022.
[19] 中国建筑材料联合会. 建设用砂:GB/T 14684—2022[S]. 北京:中国标准出版社,2022.
[20] 卢芳云, 陈荣. 霍普金森杆实验技术[M]. 北京:科学出版社, 2013.
[21] WELLS A. Impact strength of materials[J]. International Metallurgical Reviews, 1972, 17(1): 264-265.
[22] XUE G, FU Q, XUE S, et al. Macroscopic mechanical properties and microstructure characteristics of steel slag fine aggregate concrete[J]. Journal of Building Engineering, 2022, 56: 104742.
[23] BAI Y L, YAN Z W, JIA J F, et al. Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests[J]. Composite Structures, 2021, 259: 113233.
[24] 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3): 261-270. GAO Guangfa. Strain rate strengthening law of dynamic compressive strength of concrete materials[J]. Journal of High Pressure Physics, 2017, 31(3): 261-270.
[25] POON C S, SHUI Z H, LAM L. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials, 2004, 18(6): 461-468.
[26] XIAO S H. Dynamic properties of PVA short fiber reinforced low-calcium fly ash-slag geopolymer under an SHPB impact load[J]. Journal of Building Engineering, 2021, 44: 103220.
[27] 陈江瑛, 王礼立. 水泥砂浆的率型本构方程[J]. 宁波大学学报(理工版), 2000(2): 1-5. CHEN Jiangying, WANG Lili. The rate type constitutive equation of cement mortar[J]. Journal of Ningbo University(Science and Engineering Edition), 2000(2): 1-5.
[28] 王礼立, 董新龙, 孙紫建. 高应变率下计及损伤演化的材料动态本构行为[J]. 爆炸与冲击, 2006(3): 193-198. WANG Lili, DONG Xinlong, SUN Zijian. Dynamic constitutive behavior of materials considering damage evolution under high strain rates[J]. Explosion and Impact, 2006(3): 193-198.
[1] 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113.
[2] 薛刚,邬松,董伟. 碳化钢渣细骨料混凝土本构关系[J]. 山东大学学报 (工学版), 2025, 55(2): 97-105.
[3] 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121.
[4] 张启懿,邹春霞,郭晓松,宋育鑫,郑建庭,赵溢. NaOH改善粉煤灰混凝土微结构及抗风蚀-冻融耐久性能[J]. 山东大学学报 (工学版), 2024, 54(4): 131-140.
[5] 罗靓,晏宇翔,吕辉,张成明. 异形钢管混凝土轴压短柱力学性能[J]. 山东大学学报 (工学版), 2024, 54(3): 103-114.
[6] 王鹏, 黄成, 赵国浩, 张峰. 混凝土单箱三室箱梁水化热温度场及应变场模型试验[J]. 山东大学学报 (工学版), 2024, 54(1): 109-122.
[7] 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130.
[8] 王旭昊,刘倩倩,李虎成,李程,李鹏,凌一峰. 装配式水泥混凝土路面板空心形式研究与优化[J]. 山东大学学报 (工学版), 2022, 52(4): 139-150.
[9] 刘文杰,杨学英,张波,范志鑫,李成新,杨惠茗,李景龙. 含裂隙无腹筋梁的抗剪承载能力[J]. 山东大学学报 (工学版), 2022, 52(3): 42-50.
[10] 李军伟,徐飞,王兵,高阳. 混凝土不同骨料粒径对声发射检测的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 84-90.
[11] 周术明,颜东煌. 基于裂缝参数的钢筋混凝土预裂梁刚度试验研究[J]. 山东大学学报 (工学版), 2021, 51(1): 53-59.
[12] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49.
[13] 林超,张程林,王勇. 预应力中空棒构件设计与力学特性[J]. 山东大学学报 (工学版), 2020, 50(5): 26-32.
[14] 刘协,李国华,王明,马池帅. “套接式H型”缓冲器在超大型竖井混凝土施工中的应用[J]. 山东大学学报(工学版), 2017, 47(2): 37-40.
[15] 秦子鹏,田艳,李刚,马玉薇,刘乐,张金剑. BFRP层数对加固钢筋混凝土梁抗弯性能的影响[J]. 山东大学学报(工学版), 2017, 47(1): 76-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!