您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 154-164.doi: 10.6040/j.issn.1672-3961.0.2024.078

• 土木工程 • 上一篇    

钢渣及钢纤维对沥青混合料微波加热与路用性能影响研究

胡瑶瑶1,张圣涛2,肖玉帅3*,宋士茂4,张吉哲3   

  1. 1.山东省交通规划设计院集团有限公司, 山东 济南 250101;2.山东高速集团有限公司, 山东 济南 250098;3.山东大学齐鲁交通学院, 山东 济南 250002;4.山东省高速养护集团有限公司, 山东 济南 250032
  • 发布日期:2025-10-17
  • 作者简介:胡瑶瑶(1989— ),女,山东诸城人,高级工程师,硕士,主要研究方向为道路工程材料. E-mail: 1932712922@qq.com. *通信作者简介:肖玉帅(1997— ),男,山东菏泽人,硕士研究生,主要研究方向为道路工程材料. E-mail: 15871826064@163.com

Study on the effect of steel slag and steel fiber on microwave heating and pavement performance of asphalt mixture

HU Yaoyao1, ZHANG Shengtao2, XIAO Yushuai3*, SONG Shimao4, ZHANG Jizhe3   

  1. HU Yaoyao1, ZHANG Shengtao2, XIAO Yushuai3*, SONG Shimao4, ZHANG Jizhe3(1. Shandong Provincial Communications Planning and Design Institute Co., Ltd., Jinan 250101, Shandong, China;
    2. Shandong Hi-Speed Group Co., Ltd., Jinan 250098, Shandong, China;
    3. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    4. Shandong Province Hi-Speed Maintenance Group Co., Ltd., Jinan 250032, Shandong, China
  • Published:2025-10-17

摘要: 针对诱导性材料对沥青混合料微波加热性能影响规律不清的问题,设计制备不同钢纤维质量分数的钢渣沥青混合料、玄武岩沥青混合料、粗钢中玄沥青混合料及粗玄中钢沥青混合料,通过微波加热试验研究钢渣及钢纤维对沥青混合料升温速率及升温均匀性的影响规律,采用车辙试验、低温弯曲试验、浸水马歇尔试验、体积安定性试验与四点弯曲疲劳试验评价钢渣沥青混合料的路用性能。结果表明:钢渣显著提高了沥青混合料的微波加热升温效率,但降低了升温均匀性;钢纤维对沥青混合料微波加热升温效率影响不明显,随着钢纤维质量分数的增加升温均匀性呈现先改善后劣化的规律;钢渣的掺入能够提升沥青混合料的高低温性能与疲劳性能,但对混合料的体积安定性与水稳定性产生不利影响。本研究初步证实了钢渣用作诱导加热自愈合沥青路面集料的可行性,具有较好的应用前景。

关键词: 钢渣, 沥青混合料, 钢纤维, 微波加热, 升温均匀性, 耐久性

Abstract: In response to the problem of unclear patterns of the influence of induced materials on the microwave heating performance of asphalt mixtures, coarse basalt and middle basalt asphalt mixture, coarse steel slag and middle steel slag asphalt mixture, coarse basalt and middle steel slag asphalt mixture, and coarse steel slag and middle basalt asphalt mixture with different dosages of steel fibers had been designed and prepared. The influence of steel slag and steel fiber on the heating rate and uniformity of asphalt mixture was studied by microwave heating test. In addition, rutting test, low-temperature bending test, water-soaked Marshall test, volumetric stability test and four-point bending fatigue test were used to evaluate the pavement performance of steel slag asphalt mixtures. The results found that steel slag significantly improved the microwave heating efficiency of asphalt mixtures, but reduced the heating uniformity. The effect of steel fiber on the microwave heating efficiency of asphalt mixtures was not obvious, and the heating uniformity showed the phenomenon of first improvement and then deterioration with the increase of steel fiber dosage. The incorporation of steel slag could improve the high and low temperature performance as well as fatigue resistance of asphalt mixtures, but it adversely affected the volume stability and water stability of the mixtures. This study preliminarily confirmed the feasibility of steel slag used as induced-heating self-healing asphalt pavement aggregate, showing promising application potential.

Key words: steel slag, asphalt mixture, steel fiber, microwave heating, warming uniformity, durability

中图分类号: 

  • U414
[1] WAN P, WU S P, LIU Q, et al. Extrinsic self-healing asphalt materials: a mini review[J]. Journal of Cleaner Production, 2023, 425: 138910.
[2] BAZIN P, SAUNIER J. Deformability, fatigue and healing properties of asphalt mixes[C] //Proceedings of the International Conference on the Structural Design of Asphalt Pavements. Washington, USA:[s.n.] , 1967: 438-451.
[3] TRIGOS L, GALLEGO J, ESCAVY J I. Heating potential of aggregates in asphalt mixtures exposed to microwaves radiation[J]. Construction and Building Materials, 2020, 230: 117035.
[4] 朱洪洲, 袁海, 魏巧, 等. 沥青混合料断裂-微波自愈合影响因素分析[J]. 科学技术与工程, 2020, 20(11): 4547-4552. ZHU Hongzhou, YUAN Hai, WEI Qiao, et al. On influence factors on asphalt mixture fracture microwave-healing performance[J]. Science Technology and Engineering, 2020, 20(11): 4547-4552.
[5] JAHANBAKHSH H, MOGHADAS NEJAD F, KHODAII A, et al. Sustainable induction-heatable cold patching using microwave and reclaimed asphalt pavement[J]. Journal of Materials in Civil Engineering, 2024, 36(3): 04023607.
[6] ZHANG L T, ZHANG Z H, YU W X, et al. Review of the application of microwave heating technology in asphalt pavement self-healing and de-icing[J]. Polymers, 2023, 15(7): 1696.
[7] 马登成, 曹雨轩, 桂学. 红外热风协同加热实验台结构设计与仿真验证[J]. 哈尔滨工业大学学报, 2023, 55(3): 49-57. MA Dengcheng, CAO Yuxuan, GUI Xue. Structural design and simulation verification of experimental platform for infrared and hot air collaborative heating[J]. Journal of Harbin Institute of Technology, 2023, 55(3): 49-57.
[8] NORAMBUENACONTRERAS J, GARCIA A. Self-healing of asphalt mixture by microwave and induction heating[J]. Materials & Design, 2016, 106: 404-414.
[9] SUN Y H, WU S P, LIU Q T, et al. Snow and ice melting properties of self-healing asphalt mixtures with induction heating and microwave heating[J]. Applied Thermal Engineering, 2018, 129: 871-883.
[10] REN X Y, SHA A M, LI J G, et al. Carbon fiber powder in sustainable asphalt pavements: improving microwave self-healing capacity and low-temperature performance[J]. Journal of Cleaner Production, 2024, 440: 140828.
[11] LIU J N, WANG Z J, GUO H Y, et al. Thermal transfer characteristics of asphalt mixtures containing hot poured steel slag through microwave heating[J]. Journal of Cleaner Production, 2021, 308: 127225.
[12] 向阳开, 刘威震, 赵毅, 等. 钢渣沥青混合料微波加热自愈合性能研究[J]. 硅酸盐通报, 2022, 41(2): 667-677. XIANG Yangkai, LIU Weizhen, ZHAO Yi, et al. Self-healing performance of steel slag asphalt mixtures by microwave heating[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 667-677.
[13] 李佰昌, 王丽健, 孙艺涵, 等. 钢纤维对沥青混合料微波加热及耐久性能的影响[J]. 当代化工, 2022, 51(3): 555-560. LI Baichang, WANG Lijian, SUN Yihan, et al. Effect of steel fiber on microwave heating and durability of asphalt mixture[J]. Contemporary Chemical Industry, 2022, 51(3): 555-560.
[14] LOU B W, SHA A M, et al. Improved microwave heating uniformity and self-healing properties of steel slag asphalt containing ferrite filler[J]. Materials and Structures, 2021, 54: 1-14.
[15] LOUREIRO C D A, SILVA H M R D, OLIVEIRA J R M, et al. The effect of microwave radiation on the self-healing performance of asphalt mixtures with steel slag aggregates and steel fibers[J]. Materials, 2023, 16(10): 3712.
[16] CHANDRASHEKAR GOWDA K N, NAVEEN G M. Laboratory performance of asphalt mixtures incorporating electric arc furnace slag and basic oxygen furnace slag as partial replacement for conventional aggregates[J]. Energy, Ecology and Environment, 2023, 8(6): 586-595.
[17] BAI X F, WANG L. Study on mesoscopic model of low-temperature cracking of steel slag asphalt mixture based on random aggregate[J]. Construction and Building Materials, 2023, 364: 129974.
[18] 柳力, 朱晓明, 刘朝晖, 等. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 66-72. LIU Li, ZHU Xiaoming, LIU Zhaohui, et al. Effect of steel slag content on performance of rubber mixture ARAC-13[J]. Materials Reports, 2023, 37(10): 66-72.
[19] 张彩利, 王超, 李松, 等. 钢渣沥青混合料水稳定性研究[J]. 硅酸盐通报, 2021, 40(1): 207-214. ZHANG Caili, WANG Chao, LI Song, et al. Research on water stability of steel slag asphalt mixture[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 207-214.
[20] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020,20(2): 15-33. HE Liang, ZHAN Chengyang, LYU Songtao, et al. Application status of steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 15-33.
[21] WU J W, WANG J, LIU G, et al. Giant room-temperature magnetodielectric coupling in spark plasma sintered brownmillerite ceramics[J]. Applied Physics Letters, 2014, 105(22): 222906.
[22] SHI C J. Steel slag—its production, processing, characteristics, and cementitious properties[J]. Journal of Materials in Civil Engineering, 2004, 16(3): 230-236.
[23] 中华人民共和国工业和信息化部. 钢渣中游离氧化钙含量测定方法: YB/T 4328—2012[S]. 北京: 冶金工业出版社, 2013.
[1] 薛刚,邱永康,秦政博,董伟. 盐溶液干湿循环作用下钢渣细骨料混凝土的耐久性[J]. 山东大学学报 (工学版), 2025, 55(5): 130-139.
[2] 薛刚,刘秋雨,董伟,李京军. 冲击荷载下钢渣细骨料混凝土力学特性及本构关系[J]. 山东大学学报 (工学版), 2025, 55(4): 108-117.
[3] 薛刚,邬松,董伟. 碳化钢渣细骨料混凝土本构关系[J]. 山东大学学报 (工学版), 2025, 55(2): 97-105.
[4] 银英姿,魏景涛,泽里罗布,董伟. 基于Wiener退化过程的纤维混凝土抗冻性[J]. 山东大学学报 (工学版), 2025, 55(2): 106-113.
[5] 张吉哲,刚子璇,毕玉峰,岳红亚,徐润,丁婷婷,齐仕杰. 基于有机-无机改性的赤泥沥青混合料综合性能[J]. 山东大学学报 (工学版), 2023, 53(1): 1-10.
[6] 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38.
[7] 姚玉权,黄伯承,宋亮,张建,仰建岗,高杰. 多来源RAP下RHMA材料组成的动态控制策略[J]. 山东大学学报 (工学版), 2022, 52(6): 79-88.
[8] 徐振,李德明,王彬,詹谷益,张世杰. 硬岩隧道纯钢纤维混凝土管片应用[J]. 山东大学学报 (工学版), 2020, 50(5): 44-49.
[9] 郭德栋,张圣涛,李晋,张龙,张习斌. 厂拌热再生过程中旧矿料颗粒的迁移行为[J]. 山东大学学报(工学版), 2018, 48(2): 46-52.
[10] 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71.
[11] 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79.
[12] 李晓娟,韩森,贾志清,张丽娟. 基于弯曲试验的沥青混合料低温抗裂性研究[J]. 山东大学学报(工学版), 2010, 40(6): 88-93.
[13] 姚占勇,张燕军 . 沥青混合料用纤维性能分析[J]. 山东大学学报(工学版), 2008, 38(4): 69-74 .
[14] 谭忠盛,黄成造 ,刘恒,朋改非 . 大跨公路隧道结构耐久性分析[J]. 山东大学学报(工学版), 2008, 38(3): 18-22 .
[15] 刘树堂,张浩,冯勇 . 类似级配沥青混合料最佳油石比关系研究[J]. 山东大学学报(工学版), 2006, 36(6): 91-94 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!