山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 140-153.doi: 10.6040/j.issn.1672-3961.0.2024.186
• 土木工程 • 上一篇
孙传迪1,2,3,宋飞1,2,3*
SUN Chuandi1,2,3, SONG Fei1,2,3*
摘要: 通过对酸、碱溶液浸泡后格室加筋土进行常规三轴试验,对试样破坏形态、土体填料基本物理参数进行测定分析。结合三轴试验取得的应力-应变曲线对格室加筋体的应力-应变响应模型进行验证,后采用固结排水三轴试验对酸碱环境下等效直径为0.34、0.45 m的格室加筋土应力-应变响应、表观黏聚力的变化进行研究分析。研究结果表明:经三轴试验取得格室加筋土邓肯-张模型参数应用于偏应力-轴向应变、体应变-轴向应变关系曲线与试验曲线几乎吻合,即推导公式计算结果符合试验测得的数据;应力-应变响应分析中,PET(polyethylene terephthalate)比PP(polypropylene)格室加筋土酸碱环境影响大,且PET材料两种尺寸格室加筋土结构对酸性环境较碱性敏感,等效直径为0.45 m较0.34 m对酸碱反应大,易产生剪切破坏;两种直径PET格室加筋土在酸环境下表观黏聚力分别减小9.2%和7.8%,碱环境下受影响较小。而PP材料直径为0.34 m时不受酸、碱影响,只有直径为0.45 m时在碱环境下减小13.3%,且不受酸环境影响。
中图分类号:
| [1] 宋飞, 刘杰. 土工格室加筋土等效强度与等效刚度计算方法[M]. 北京:中国水利水电出版社, 2020:1-5. SONG Fei, LIU Jie. Calculation method of equivalent strength and equivalent stiffness of geocell reinforced soil[M]. Beijing:China Water Resources and Hydropower Press, 2020:1-5. [2] HASSANLOURAD M, KHATAMI M H, AHMADI M M. Effects of sulphuric acid pollutant on the shear behaviour and strength of sandy soil and sand mixed with bentonite clay[J].International Journal of Geotechnical Engineering, 2016: 1-6. [3] 刘华, 胡鹏飞, 王松鹤, 等. 酸溶液对原状黄土抗拉强度的影响试验研究[J]. 土木与环境工程学报(中英文), 2022, 44(5): 109-117. LIU Hua, HU Pengfei, WANG Songhe, et al. Experimental study on the influence of acid solutions to the tensile strength characteristics of undisturbed loess[J].Journal of Civil and Environmental Engineering, 2022, 44(5): 109-117. [4] 刘华, 胡文乐, 胡鹏飞, 等. 酸污染黄土强度指标及电阻率评价研究[J].地下空间与工程学报, 2022, 18(2): 662-672. LIU Hua, HU Wenle, HU Pengfei, et al. Evaluation of strength index and resistivity of acid-contaminated loess[J].Chinese Journal of Underground Space and Engineering, 2022, 18(2): 662-672. [5] ABEDI KOUPAI J, FATAHIZADEH M, MOSADD-EGHI M R. Effect of pore water pH on mechanical properties of clay soil[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1461-1469. [6] ALIBEIKI Y, HASSANLOURAD M, GHASEMIP-ANAH A. Effect of acidic and alkaline pore fluid on the mechanical properties of fine-grained soil[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(12): 512. [7] 刘华, 张硕成, 牛富俊, 等. 酸碱污染Q3黄土的一维压缩特征试验研究[J]. 岩土力学, 2019, 40(增刊1): 210-216. LIU Hua, ZHANG Shuocheng, NIU Fujun, et al. Experimental study on one-dimensional compression characteristics of Q3 loess contaminated by acid or alkali solutions[J]. Rock and Soil Mechanics, 2019, 40(Suppl.1): 210-216. [8] 陈玉英. 土工合成材料的应用[J]. 河南水利与南水北调, 2004(2): 25-25. [9] 朱庆松, 魏晓丽, 孙玉山, 等. 影响丙纶土工布老化的主要环境因素[J]. 纺织科学研究, 2003, 14(4): 37-42. ZHU Qingsong, WEI Xiaoli, SUN Yushan, et al. Main environmental factors affecting the aging of polypropylene geotextile[J]. Textile Science Research, 2003, 14(4): 37-42. [10] ROWE R K, ABDELAAL F B. Antioxidant depletion in high-density polyethylene(HDPE)geomembrane with hindered amine light stabilizers(HALS)in low-pH heap leach environment[J]. Canadian Geotechnical Journal, 2016, 53(10): 1612-1627. [11] 苏有文, 杨婷惠, 杨凯, 等. 复合土工膜耐酸碱性能试验研究[J]. 浙江工业大学学报, 2016, 44(4): 456-460. SU Youwen, YANG Tinghui, YANG Kai, et al. Experimental study on corrosion resistance of composite geomembranes[J]. Journal of Zhejiang University of Technology, 2016, 44(4): 456-460. [12] ZHANG L, BOUAZZA A, ROWE R K, et al. Effects of a very low pH solution on the properties of an HDPE geomembrane[J]. Geosynthetics International, 2018, 25(2): 118-131. [13] 侯娟, 张孟喜, 韩晓, 等. 单个高强土工格室作用机理的有限元分析[J]. 岩土工程学报, 2015, 37(增刊1): 26-30. HOU Juan, ZHANG Mengxi, HAN Xiao, et al. Finite element analysis of the action mechanism of a single high-strength geocell[J]. Journal of Geotechnical Engineering, 2015, 37(Suppl.1): 26-30. [14] 交通部公路科学研究所,重庆交通学院,重庆百天塑料建材有限公司. 公路工程土工合成材料 土工格:JT/T 516—2004[S]. 北京:人民交通出版社, 2004. [15] 中华人民共和国农业部.土壤检测第2部分:土壤pH的测定:NY/T 1121.2—2006[S]. 北京: 中国标准出版社, 2006. [16] 中华人民共和国住房和城乡建设部,国家市场监督管理总局. 土工试验方法标准:GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. [17] 刘宽, 叶万军, 高海军, 等. 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(增刊1): 1-12. LIU Kuan, YE Wanjun, GAO Haijun, et al. Evolution law and micro-mechanism of shear strength of acid-base polluted loess[J]. Rock and Soil Mechanics, 2022, 43(Suppl.1): 1-12. [18] DUNCAN J M.Strength, stress-strain and bulk modulus parameters for finite element analyses of stresses and movements in soil masses[J].Journal of Consulting & Clinical Psychology, 1980, 49(4):554-567. [19] 马健玮. 屈服函数和弹性变形对格室加筋土等效强度和等效刚度计算方法的影响研究[D]. 西安:长安大学, 2020. MA Jianwei. Research on the effect of yield function and elastic deformation on the calculation method of equivalent strength and equivalent stiffness of lattice-cell reinforced soil[D]. Xi'an: Chang'an University, 2020. [20] 孟亚会.土工格室加筋土等效强度与等效刚度确定方法研究[D]. 西安:长安大学, 2019. MENG Yahui. Research on the method of determining equivalent strength and equivalent stiffness of geocell reinforced soil[D]. Xi'an:Chang'an University, 2019. [21] ZHANG B, SONG F, LI W G. Stability analysis of retaining walls with geocell-reinforced road milling materials[J]. Sustainability, 2023, 15(5): 4297. [22] SONG F, JIN Y T, LIU H B, et al. Analyzing the deformation and failure of geosynthetic-encased granular soil in the triaxial stress condition[J]. Geotextiles and Geomembranes, 2020, 48(6): 886-896. [23] SONG F, CHEN W, NIE Y, et al. Evaluation of required stiffness and strength of cellular geosynthetics[J]. Geosynthetics International, 2022, 29(3): 217-228. [24] 宋飞, 石磊, 樊明尊. 土工格室加筋正常固结粉质黏土应力应变响应[J]. 地质科技通报, 2024, 43(1): 184-193. SONG Fei, SHI Lei, FAN Mingzun. Stress-strain response of normal consolidated silty clay reinforced in geocell[J]. Bulletin of Geological Science and Technology, 2024, 43(1): 184-193. |
| [1] | 徐子瑶,虞松,付强. 含层状节理岩体力学性质数值模拟研究[J]. 山东大学学报 (工学版), 2020, 50(3): 66-72. |
| [2] | 梁冰,兰波,王俊光. 水影响下油页岩三轴压缩力学特性试验研究[J]. 山东大学学报(工学版), 2011, 41(5): 82-85. |
|
||