山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 106-113.doi: 10.6040/j.issn.1672-3961.0.2024.022
• 土木工程 • 上一篇
银英姿,魏景涛*,泽里罗布,董伟
YIN Yingzi, WEI Jingtao*, ZELI Luobu, DONG Wei
摘要: 为探究玄武岩纤维(basalt fiber, BF)对风积沙混凝土(aeolian sand concrete, ASC)耐久性及使用寿命的影响,本试验采用风积沙等质量取代河砂,取代后风积沙质量占混凝土中河砂质量的20%,ASC中BF的体积分数选取0、0.05%、0.10%、0.15%、0.20%,制备玄武岩纤维风积沙混凝土(BF-ASC)。在冻融条件下,研究不同BF体积分数对ASC质量、相对动弹性模量的影响,并通过扫描电镜(scanning electron microscopy, SEM)分析BF-ASC的损伤劣化机理。以BF-ASC试块相对动弹性模量作为退化指标,选用一元Wiener函数进行退化过程建模,预测BF-ASC寿命。结果表明:BF的掺入能够降低ASC的孔隙率,增强粗细骨料之间的黏结力,明显提高混凝土的抗冻性能,降低混凝土冻融损伤程度,当BF体积分数为0.20%时,质量损失率最低,相对动弹性模量评价参数降幅最小,抗冻效果最佳;基于Wiener随机分布以BF-ASC相对动弹性模量作为退化指标所得到的BF-ASC可靠度函数,能够有效预测BF-ASC在盐冻环境下的使用寿命,且当ASC中BF体积分数为0.20%时,最长使用寿命约达2 500 h。
中图分类号:
[1] 褚洪岩, 蒋金洋, 李荷, 等. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033. CHU Hongyan, JIANG Jinyang, LI He, et al. Effects of eco-friendly fine aggregates on mechanical properties of ultra-high performance concrete[J]. Materials Reports, 2020, 34(24): 24029-24033. [2] 薛慧君, 申向东, 刘倩, 等. 高寒灌区风沙吹蚀对农业水利工程混凝土抗冻耐久性的影响[J]. 农业工程学报, 2017, 33(15): 133-140. XUE Huijun, SHEN Xiangdong, LIU Qian, et al. Effect of wind-sand erosion on frost resistance durability of hydraulic engineering concrete in cold irrigation area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 133-140. [3] XUE H J, SHEN X D, LIU Q, et al. Analysis of the damage to the aeolian sand concrete surfaces caused by wind-sand erosion[J]. Journal of Advanced Concrete Technology, 2017, 15(12): 724-737. [4] ZHANG M H, ZHU X Z, SHI J Y, et al. Utilization of desert sand in the production of sustainable cement-based materials: a critical review[J]. Construction and Building Materials, 2022, 327: 127014. [5] 吴俊臣, 申向东. 风积沙混凝土的抗冻性与冻融损伤机理分析[J]. 农业工程学报, 2017, 33(10): 184-190. WU Junchen, SHEN Xiangdong. Analysis on frost resistance and damage mechanism of aeolian sand concrete[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 184-190. [6] ELIPE M G M, LÓPEZ-QUEROL S. Aeolian sands: characterization, options of improvement and possible employment in construction-the state-of-the-art[J]. Construction and Building Materials, 2014, 73:728-739. [7] 刘超, 林鑫, 刘化威, 等. 风积沙与再生复合微粉对超高性能混凝土力学性能的影响[J]. 复合材料学报, 2022, 39(11): 5415-5422. LIU Chao, LIN Xin, LIU Huawei, et al. Effect of aeolian sand and recycled composite micro-powder on mechanical properties of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5415-5422. [8] 王尧鸿, 楚奇, 韩青. 库布齐风积沙对各分级河砂的填充效应[J]. 建筑材料学报, 2021, 24(1): 191-198. WANG Yaohong, CHU Qi, HAN Qing. Filing effect of Kubuqi aeolian sand on different classifications of river sand[J]. Journal of Building Materials, 2021, 24(1): 191-198. [9] 刘超, 林鑫, 朱超, 等. 风积沙应用于混凝土的研究进展[J]. 材料科学与工程学报, 2022, 40(4): 695-705. LIU Chao, LIN Xin, ZHU Chao, et al. Research progress on application of aeolian sand in concrete[J]. Journal of Materials Sciene and Engineering, 2022, 40(4): 695-705. [10] MONALDO E, NERILLI F, VAIRO G. Basalt-based fiber-reinforced materials and structural applications in civil engineering[J]. Composite Structures, 2019, 214: 246-263. [11] 宫亚峰, 吴树正, 毕海鹏, 等. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832. GONG Yafeng, WU Shuzheng, BI Haipeng, et al. Acoustic characterization of bond-slip process between basalt fiber reactive powder concrete and steel strand[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832. [12] SHAIKH F U A, TAWEEL M. Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures[J]. Advances in Concrete Construction, 2015, 3(4): 283-293. [13] YEW M K, MAHMUD H B, SHAFIGH P, et al. Effects of polypropylene twisted bundle fibers on the mechanical properties of high-strength oil palm shell lightweight concrete[J]. Materials and Structures, 2016, 49(4): 1221-1233. [14] FU Q, XU W R, BU M X, et al. Orthogonal experimental study on hybrid-fiber high-durability concrete for marine environment[J]. Journal of Materials Research and Technology, 2021, 13: 1790-1804. [15] 李福海, 高浩, 唐慧琪, 等. 短切玄武岩纤维混凝土基本性能试验研究[J]. 铁道科学与工程学报, 2022, 19(2): 419-427. LI Fuhai, GAO Hao, TANG Huiqi, et al. Basic properties and shrinkage model of chopped basalt fiber concrete[J]. Journal of Railway Science and Engineering, 2022, 19(2): 419-427. [16] 甘磊, 吴健, 沈振中, 等. 硫酸盐和干湿循环作用下玄武岩纤维混凝土劣化规律[J]. 土木工程学报, 2021, 54(11): 37-46. GAN Lei, WU Jian, SHEN Zhenzhong, et al. Deterioration law of basalt fiber reinforced concrete under sulfate attack and dry-wet cycle[J]. China Civil Engineering Journal, 2021, 54(11): 37-46. [17] CHEN X F, KOU S C, XING F. Mechanical and durable properties of chopped basalt fiber reinforced recycled aggregate concrete and the mathematical modeling[J]. Construction and Building Materials, 2021, 298: 123901. [18] 赵燕茹, 刘芳芳, 王磊, 等. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069. ZHAO Yanru, LIU Fangfang, WANG Lei, et al. Modeling of the compressive strength of basalt fiber concrete based on pore structure under single-side freeze-thaw condition[J]. Materials Reports, 2020, 34(12): 12064-12069. [19] 董伟, 付前旺, 申向东, 等. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 69-74. DONG Wei, FU Qianwang, SHEN Xiangdong, et al. Grey entropy analysis on effect of pore structure on compressive strength of aeolian sand concrete after salt-freezing[J]. Materials Reports, 2023, 37(2): 69-74. [20] 乔宏霞, 苏睿, 李琼, 等. 基于Wiener过程寿命预测的再生骨料混凝土耐久性能变化规律的研究[J]. 工业建筑, 2022, 52(6): 167-173. QIAO Hongxia, SU Rui, LI Qiong, et al. Research on variation law of durability of recycled aggregate concrete based on Wiener process life prediction[J]. Industrial Construction, 2022, 52(6): 167-173. [21] 蔡忠义, 陈云翔, 张诤敏, 等. 非线性步进加速退化数据的可靠性评估方法[J]. 北京航空航天大学学报, 2016, 42(3): 576-582. CAI Zhongyi, CHEN Yunxiang, ZHANG Zhengmin, et al. Reliability assessment method of nonlinear step-stress accelerated degradation data[J]. Journal of Beijing University of Aeronautics and Astronautics,2016, 42(3): 576-582. [22] 中国建筑科学研究院. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京:中国建筑工业出版社,2009. [23] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9): 2285-2293. XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure changecharacteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(9): 2285-2293. [24] KHANDELWAL S, RHEE K Y. Recent advances in basalt-fiber-reinforced composites:tailoring the fiber-matrix interface[J]. Composites Part B: Engineering, 2020, 192: 108011. [25] ZHOU M, HE X J, WANG H Y, et al. Experimental study of mechanism properties of interfacial transition zones in steel fiber reinforced concrete[J]. Case Studies in Construction Materials, 2024, 20: e02954. |
[1] | 董伟,朱相茹,王雪松,周梦虎. 氯盐干湿循环下风积沙混凝土微观结构演变[J]. 山东大学学报 (工学版), 2024, 54(4): 115-121. |
[2] | 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130. |
[3] | 刘澔. 钢渣粉基沥青混合料的性能评价与提升机理[J]. 山东大学学报 (工学版), 2023, 53(1): 32-38. |
[4] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[5] | 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71. |
[6] | 王甲春1,张照华2,苏宁3. 混凝土渗透性的原位测试与评价[J]. 山东大学学报(工学版), 2013, 43(5): 74-79. |
[7] | 谭忠盛,黄成造 ,刘恒,朋改非 . 大跨公路隧道结构耐久性分析[J]. 山东大学学报(工学版), 2008, 38(3): 18-22 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|