山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 75-80.doi: 10.6040/j.issn.1672-3961.0.2017.425
梁泽华,崔耀东*,张雨
LIANG Zehua, CUI Yaodong*, ZHANG Yu
摘要: 针对从具体工业应用中抽象出的一种特殊一维下料问题,提出一种基于顺序价值校正框架的下料算法,在考虑问题特殊性的同时求取最小化线材使用量的下料方案。定义并求得每两个毛坯间的损耗值后,顺序生成各个排样图,并得到下料方案。通过不断修正毛坯价值,生成多个下料方案,取其中线材消耗量最小者来逼近最优解。与其他算法进行比较的结果表明,本算法有较少的材料消耗量与合适的计算时间。
中图分类号:
[1] GILMORE P C, GOMORY R E. A linear programming approach to the cutting-stock problem [J]. Operations Research, 1961, 11(6):849-859. [2] GILMORE P C, GOMORY R E. A linear programming approach to the cutting stock problem: II [J]. Operations Research, 1963, 11(6): 863-888. [3] VANCE P H, BARNHART C, JOHNSON E L, et al. Solving binary cutting stock problems by column generation and branch-and-bound[J]. Computational Optimization and Applications, 1994, 3(2):111-130. [4] SCHEITHAUER G, TERNO J, MÜLLER A, et al. Solving one-dimensional cutting stock problems exactly with a cutting plane algorithm[J]. Journal of the Operational Research Society, 2001, 52(12):1390-1401. [5] BELOV G, SCHEITHAUER G. A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths[J]. European Journal of Operational Research, 2002, 141(2):274-294. [6] HAESSLER R W. Controlling cutting pattern changes in one-dimensional trim problems[J]. Operations Research, 1975, 23(3): 483-493. [7] VAHRENKAMP R. Random search in the one-dimensional cutting stock problem[J]. European Journal of Operational Research, 1996, 95(1):191-200. [8] GRADISAR M, KLJAJIC M, RESINOVIC G, et al. A sequential heuristic procedure for one-dimensional cutting[J]. European Journal of Operational Research, 1999, 114(3):557-568. [9] GRADISAR M, RESINOVIC G, KLJAJIC M. A hybrid approach for optimization of one-dimensional cutting[J]. European Journal of Operational Research, 1999, 119(3):719-728. [10] 刘睿, 于波, 崔耀东. 一维下料问题中提高计算效率方法的研究[J]. 计算机工程与应用, 2013, 49(9):247-250. LIU Rui, YU Bo, CUI Yaodong. Several heuristic strategies to improve computational efficiency for one-dimensional cutting stock problem[J]. Computer Engineering and Applications, 2013, 49(9):247-250. [11] BELOV G, SCHEITHAUER G. Setup and open-stacks minimization in one-dimensional stock cutting [J]. Informs Journal on Computing, 2007, 19(1): 27-35. [12] CUI Y, ZHAO X, YANG Y, et al. A heuristic for the one-dimensional cutting stock problem with pattern reduction[J]. Proceedings of the Institution of Mechanical Engineers Part B: Journal of Engineering Manufacture, 2008, 222(6):677-685. [13] CUI Y P, TANG T B. Parallelized sequential value correction procedure for the one-dimensional cutting stock problem with multiple stock lengths[J]. Engineering Optimization, 2014, 46(10):1352-1368. [14] 张春玲, 崔耀东. 一维优化下料问题[J]. 桂林理工大学学报, 2004, 24(1):103-106. ZHANG Chunling, CUI Yaodong. Optimization of one-dimensional cutting stock problem[J]. Journal of Guilin University of Technology, 2004, 24(1):103-106. [15] 金升平, 陈定方, 张翔,等. 一维优化下料问题的基因遗传算法[J]. 武汉交通科技大学学报, 1997,21(2):168-172. JIN Shengping, Chen Dingfang, ZHANG Xiang, et al. A genetic algorithm for cutting one-dimension material[J]. Journal of Wuhan Transportation University, 1997, 21(2):168-172. [16] WAGNER B J. A genetic algorithm solution for one-dimensional bundled stock cutting[J]. European Journal of Operational Research, 1999, 117(2):368-381. [17] 沈显君, 杨进才, 应伟勤,等. 一维下料问题的自适应广义粒子群优化求解[J]. 华南理工大学学报(自然科学版), 2007, 35(9):113-117. SHEN Xianjun, YANG Jincai, YING Weiqin, et al. Adaptive general particle swarm optimization for one-dimension cutting stock problem[J]. Journal of South China University of Technology(Natural Science Edition), 2007, 35(9):113-117. [18] GARRAFFA M, SALASSA F, VANCROONENBURG W, et al. The one-dimensional cutting stock problem with sequence-dependent cut losses[J]. International Transactions in Operational Research, 2015, 23(1-2): 5-24. [19] 梁秋月, 崔耀东, 游凌伟. 应用三块排样方式求解二维下料问题[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 41-45. LIANG Qiuyue, CUI Yaodong, YOU Lingwei. Soving two-dimensional cutting stock problem with three-block patterns[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 41-45. [20] 崔轶平. 多线材一维下料问题的顺序价值校正算法[D]. 桂林: 广西大学, 2015. CUI Yiping. Solving the one-dimensional cutting stock problem with multiple stock lengths using sequential value correction procedure [D]. Guilin: Guangxi University, 2015. [21] VANCROONENBURG W, DE CAUSMAECKER P, SPIEKSMA F, et al. Column generation for the 1D-CSP with SDCL, and the orienteering problem with multiplicity[R]. [2017-03-16]. http://allserv. kahosl. be/∽ wimvc/cg-1D-csp-with-sdcl. pdf, 2014. |
[1] | 李新玉, 徐桂云, 任世锦, 杨茂云. 基于鉴别流形的不相关稀疏投影非负矩阵分解[J]. 山东大学学报(工学版), 2015, 45(5): 1-12. |
[2] | 吴红岩,冀俊忠. 基于花授粉算法的蛋白质网络功能模块检测方法[J]. 山东大学学报(工学版), 2018, 48(1): 21-30. |
[3] | 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29. |
[4] | 裴小兵,陈慧芬,张百栈,陈孟辉. 改善式BVEDA求解多目标调度问题[J]. 山东大学学报(工学版), 2017, 47(4): 25-30. |
[5] | 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62. |
[6] | 翟继友,周静波,任永峰,王志坚. 基于背景和前景交互传播的图像显著性检测[J]. 山东大学学报(工学版), 2017, 47(2): 80-85. |
[7] | 邬慧敏,吴璟莉. 重建二倍体个体单体型的改进环基算法[J]. 山东大学学报(工学版), 2016, 46(4): 9-14. |
[8] | 朱杰,王晶,刘菲,高冠东,段庆. 基于成分金字塔匹配的对象分类方法[J]. 山东大学学报(工学版), 2016, 46(2): 14-21. |
[9] | 景运革,李天瑞. 基于知识粒度的增量约简算法[J]. 山东大学学报(工学版), 2016, 46(1): 1-9. |
[10] | 王立宏,李强. 旅行商问题的一种选择性集成求解方法[J]. 山东大学学报(工学版), 2016, 46(1): 42-48. |
[11] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015, 45(6): 1-6. |
[12] | 高艳普, 王向东, 王冬青. 多变量受控自回归滑动平均系统的极大似然辨识方法[J]. 山东大学学报(工学版), 2015, 45(2): 49-55. |
[13] | 卢文羊, 徐佳一, 杨育彬. 基于LDA主题模型的社会网络链接预测[J]. 山东大学学报(工学版), 2014, 44(6): 26-31. |
[14] | 江伟坚1,2,郭躬德1,2*,赖智铭1,2. 基于新Haar-like特征的Adaboost人脸检测算法[J]. 山东大学学报(工学版), 2014, 44(2): 43-48. |
[15] | 陈文强1,林琛1,2,陈珂3,陈锦秀1,邹权1,2*. 基于GraphLab的分布式近邻传播聚类算法[J]. 山东大学学报(工学版), 2013, 43(5): 13-18. |
|