山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 9-14.doi: 10.6040/j.issn.1672-3961.1.2016.229
邬慧敏1,吴璟莉1,2,3
WU Huimin1, WU Jingli1,2,3
摘要: HapCompass算法是求解最少带权边删除模型(the minimum weighted edge removal, MWER)的有效启发式方法,该算法采用删除权值绝对值最小的边的方式消除冲突环基,当同时存在多条权值绝对值最小的边时,HapCompass随机选择删除边,导致求解方案的不确定性,降低重建效果。针对该问题,提出IHapCompass算法,改进去边规则,利用(00)/(11)和(01)/(10)分型的片段支持差异数与总片段数之间的比值来确定删除边,对随机取值问题做出有效限定。此外,IHapCompass以单体型中0/1取值的概率为图中孤立点赋值,明确孤立点取值。采用真实单体型数据进行测试,结果表明,IHapCompass算法在各种参数设置下,均能获得较算法HapCompass、DGS和Fast Hare更高的单体型重建率,具有较高的执行效率。该算法为求解二倍体个体单体型重建问题提供一定的参考。
中图分类号:
[1] LANCIA G, BAFNA V, ISTRAIL S, et al. SNPs problems, complexity, and algorithms[C] // Proceedings of ESA-01. Aarhusv Denmark: Springer Press, 2001:182-193. [2] LIPPERT R, SCHWARTZ R, LANCIA G, et al. Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem[J]. Briefings in Bioinformatics, 2002, 3(1):23-31. [3] SCHWARTZ R. Theory and algorithms for the haplotype assembly problem[J]. Communications in Information & Systems, 2010, 10(1):23-38. [4] GERACI F. A comparison of several algorithms for the single individual SNP haplotyping reconstruction problem[J]. Bioinformatics, 2010, 26(18):2217-2225. [5] AGUIAR D, ISTRAIL S. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data[J]. Journal of Computational Biology, 2012, 19(6):577-590. [6] XIE Minzhu, WANG Jianxin, CHEN Xin. LGH: a fast and accurate algorithm for single individual haplotyping based on a two-locus linkage graph[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(6):1255-1266. [7] RIZZI R, BAFNA V, ISTRAIL S, et al. Practical algorithms and fixed-parameter tractability for the single individual SNP haplotyping problem[C] //Proceedings of WABI-02. Rome, Italy: Springer Press, 2002:29-43. [8] BAFNA V, ISTRAIL S, LANCIA G, et al. Polynomial and APX-hard cases of the individual haplotyping problem[J]. Theoretical Computer Science, 2005, 335(1):109-125. [9] XIE Minzhu, CHEN Jian'er, WANG Jianxin. Research on parameterized algorithms of the individual haplotyping problem[J]. Journal of Bioinformatics and Computational Biology, 2007, 5(3):795-816. [10] CILIBRASI R, IERSEL L V, KELK S, et al. The complexity of the single individual SNP haplotyping problem[J]. Algorithmica, 2007, 49(1):13-36. [11] WANG Ruisheng, WU Lingyun, LI Zhenping, et al. Haplotype reconstruction from SNP fragments by minimum error correction[J]. Bioinformatics, 2005, 21(10):2456-2462. [12] PANCONESI A, SOZIO M. Fast hare: a fast heuristic for single individual SNP haplotype reconstruction[C] //Proceedings of WABI-04. Bergen, Norway: Springer Press, 2004:266-277. [13] GENOVESE L M, GERACI F, PELLEGRINI M. SpeedHap: an accurate heuristic for the single individual SNP haplotyping problem with many gaps, high reading error rate and low coverage[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5(4):492-502. [14] LEVY S, SUTTON G, NG P C, et al. The diploid genome sequence of an individual human[J]. PLOS Biology, 2007, 5(10):2113-2144. [15] BANSAL V, BAFNA V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem[J]. Bioinformatics, 2008, 24(16):i153-i159. [16] MAZROUEE S, WANG W. FastHap: fast and accurate single individual haplotype reconstruction using fuzzy conflict graphs[J]. Bioinformatics, 2014, 30(17):i371-i378. [17] 吴璟莉. 遗传多态性检测中组合优化问题的研究[D]. 长沙: 中南大学, 2008. WU Jingli. Research on the combinatorial optimization problem in detection of genetic diversities[D]. Changsha: Central South University, 2008. [18] WU Jingli, LIANG Binbin. A fast and accurate algorithm for diploid individual haplotype reconstruction[J]. Journal of Bioinformatics and Computational Biology, 2013, 11(4):1350010. [19] The International HapMap Consortium. The international HapMap project[J]. Nature, 2003, 426(6968):789-796. [20] MYERS G. A dataset generator for whole genome shotgun sequencing[C] //Proceedings of ISMB-99. Heidelberg, Germany: AAAI Press, 1999:202-210. [21] RICHTER D C, OTT F, AUCH A F, et al. MetaSim: a sequencing simulator for genomics and metagenomics[J]. Plos One, 2008, 3(10):1-12. |
[1] | 陈海永,余力,刘辉,杨佳博,胡启迪. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报 (工学版), 2018, 48(5): 24-31. |
[2] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报 (工学版), 2018, 48(5): 55-60. |
[3] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报 (工学版), 2018, 48(5): 9-15, 37. |
[4] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84. |
[5] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
[6] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[7] | 江珊珊,杨静,范丽亚. 基于PDEs的图像特征提取方法[J]. 山东大学学报(工学版), 2018, 48(4): 27-36. |
[8] | 何文杰 ,何伟超,孙权森. 压缩感知重构算法的并行化及GPU加速[J]. 山东大学学报(工学版), 2018, 48(3): 110-114. |
[9] | 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109. |
[10] | 李雨鑫,普园媛,徐丹,钱文华,刘和娟. 深度卷积神经网络嵌套fine-tune的图像美感品质评价[J]. 山东大学学报(工学版), 2018, 48(3): 60-66. |
[11] | 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53. |
[12] | 王雪琴,李树荣,于妤,王家岩. 带几何约束的彩色图像选择性分割[J]. 山东大学学报(工学版), 2018, 48(2): 22-29. |
[13] | 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20. |
[14] | 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194. |
[15] | 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222. |
|