山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 14-21.doi: 10.6040/j.issn.1672-3961.2.2015.065
朱杰1,2,王晶1,刘菲3,高冠东1,段庆1
ZHU Jie1,2, WANG Jing1, LIU Fei3, GAO Guandong1, DUAN Qing1
摘要: 提出基于成分金字塔匹配(component pyramid matching, CPM)的图像表示方法,将图像块按照颜色进行分层,在每一层中通过优化的方式选取几种颜色的图像块作为当前层次图像的前景成分,其余颜色的图形块作为图像的背景成分。前景成分对应对象的某些区域,能够为图像表示提供弱语义信息。然后,利用相似的颜色选择方法,对每一层背景成分进行再次划分,将其分为下一层前景成分和背景成分两部分。最后将这些成分所表示的直方图连接起来作为图像表示用于分类。试验采用Soccer、Flower17和Flower102 3个图像集进行测评,试验结果表明提出的算法能够得到比较好的分类结果。
中图分类号:
[1] CSURKA G, DANCE CR, FAN LX, et al. Visual categorization with bags of keypoints[C] //Proceedings of the 8th European Conference on Computer Vision. Prague: IEEE, 2004:1-22. [2] CAO Y, WANG C, LI Z, et al. Spatial-bag-of-features[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3352-3359. [3] MORIOKA N, SATOH S. Building compact local pairwise codebook with joint feature space clustering[C] //Proceedings of the 11th European Conference on Computer Vision. Crete: IEEE, 2010:692-705. [4] SIVIC J, RUSSELL B, EFROS A, et al. Discovering objects and their location in images[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing:IEEE, 2005:370-377. [5] GRAUMAN K, DARRELL T. The pyramid match kernel: Discriminative classification with sets of image features[C] //Proceedings of the 10th International Conference on Computer Vision. Beijing: IEEE, 2005:1458-1465. [6] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York:IEEE, 2006:2169-2178. [7] YANG J, YU K, GONG Y, et al. Linear spatial pyramid matching using sparse coding for image classification [C] //Proceedings of the 22th IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Florida: IEEE, 2009:1794-1801. [8] LI F, CARREIRA J, SMINCHISESCU C. Object recognition as ranking holistic figure-ground hypotheses[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:1712-1719. [9] CHEN Q, SONG Z, HUA Y, et al. Hierarchical matching with side information for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3426-3433. [10] LI L J, SU H, LIM Y, et al. Object bank: an object-level image representation for high-level visual recognition[J].International Journal of Computer Vision, 2014, 107(1):20-39. [11] FERNANDO B, FROMONT E, TUYTELAARS T. Mining mid-level features for image classification[J]. International Journal of Computer Vision, 2014, 108(3): 186-203. [12] LIU J, ZHANG C, TIAN Q, et al. One step beyond bags of features: visual categorization using component[C] //Proceedings of the International Conference on Image Processing. Brussels: IEEE, 2011:2417-2420. [13] LOWE D G. Object recognition from local scale-invariant features[C] //Proceedings of the 7th International Conference on Computer Vision. Kerkyra:IEEE, 1999: 1150-1157. [14] VAN-DE-WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J].IEEE Transactions on Image Processing, 2009, 18(7):1512-1523. [15] VAN-DE-WEIJER J, SCHMID C. Coloring local feature extraction[C] //Proceedings of the 9th European Conference on Computer Vision. Graz: IEEE, 2006:334-348. [16] SHAHBAZ-KHAN F, VAN-DE-WEIJER J, VANRELL M.Top-down color attention for object recognition[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo: IEEE, 2009:979-986. [17] NILSBACK M E, ZISSEMAN A. A visual vocabulary for flower classification[C] //Proceedings of the 19th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006:1447-1454. [18] NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C] //Proceedings of the 6th Indian Conference on Computer Vision, Graphics and Image Processing. Bhubaneswar: IEEE, 2008:722-729. [19] FERNANDO B, FROMONT E, MUSELET D, et al. Discriminative feature fusion for image classification[C] //Proceedings of the 25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Rhode Island: IEEE, 2012:3434-3441. [20] GEHLER P, NOWOZIN S. On feature combination for multiclass object classification[C] //Proceedings of the 12th International Conference on Computer Vision. Tokyo:IEEE, 221-228. [21] YUAN X T, YAN S. Visual classification with multi-task joint sparse representation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3493-3500. [22] YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel fisher discriminant analysis for object and image categorisation[C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:3626-3632. [23] KANAN C, COTTRELL G. Robust classification of objects, faces, and flowers using natural image statistics [C] //Proceedings of the 23th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010:2472-2479. [24] CHAI Y, LEMPITSKY V, ZISSERMAN A. BiCoS: A Bi-level Co-Segmentation Method for Image Classification[C] //Proceedings of the 13th International Conference on Computer Vision. Barcelona: IEEE, 2011:2579-2586. [25] CHAI Y, RAHTU E, RAHTU E, et al. Tricos: A tri-level class-discriminative co-segmentation method for image classification[C] //Proceedings of the 12th European Conference on Computer Vision. Firenze: IEEE, 2012:794-807. |
[1] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[2] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[3] | 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139. |
[4] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[5] | 龙柏,曾宪宇,李徵,刘淇. 电商商品嵌入表示分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 17-24. |
[6] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[7] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[8] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
[9] | 王磊,邓晓刚,曹玉苹,田学民. 基于MLFDA的化工过程故障模式分类方法[J]. 山东大学学报(工学版), 2017, 47(5): 179-186. |
[10] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[11] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[12] | 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14. |
[13] | 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22. |
[14] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
[15] | 郭志波, 董健, 庞成. 多技术融合的Mean-Shift目标跟踪算法[J]. 山东大学学报(工学版), 2015, 45(2): 10-16. |
|