您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 44-50.doi: 10.6040/j.issn.1672-3961.0.2015.295

• • 上一篇    下一篇

基于位置社交网络中地点聚类推荐方法

李朔,石宇良   

  1. 北京工业大学软件学院, 北京100124
  • 收稿日期:2015-09-06 出版日期:2016-06-30 发布日期:2015-09-06
  • 作者简介:李朔(1990— ),女,北京人,硕士研究生,主要研究方向为信息服务.E-mail:jlsxs1990@sina.com

The method of spot cluster recommendation in location-based social networks

LI Shuo, SHI Yuliang   

  1. School of Software Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2015-09-06 Online:2016-06-30 Published:2015-09-06

摘要: 为解决基于位置社交网络中地点推荐时遇到的数据稀疏、冷启动问题,提出一种改进的地点推荐方法,在协同过滤算法的基础上融合了聚类算法,考虑到用户偏好、朋友关系、位置语义等因素,在推荐时取两种算法的优点进行互补。研究的重点是相似度的计算,包括兴趣地点相似度、好友亲密度、词频-逆文档频率、余弦相似性。在Foursquare数据集上以准确率、召回率、单个主题的平均准确率作为度量依据,对提出的方法进行验证。试验证明,本方法有效提高了推荐效果。

关键词: 位置推荐, 聚类, 协同过滤, 基于位置的社交网络

Abstract: In order to solve the data sparse and cold start in spot recommendation in the location-based social networking, an improved spot recommendation method was proposed. Based on the clustering algorithm and the collaborative filtering algorithm, the user preferences, friend relations, semantic location and other factors was taken into account. The advantages of the two methods were complemented. The focus of this research was the calculation of similarity, which included location similarity, friends intimacy measure, term frequency inverse document frequency, cosine similarity.To verify the proposed methods, precision, recall,mean average precision was used as a measure on Foursquare dataset. The results showed that the proposed method could effectively improve the recommendation effect.

Key words: clustering, collaborative filtering, location-based social network, spot recommendation

中图分类号: 

  • TP391
[1] 朱立超,李治军,姜守旭.基于位置的社交网络研究综述[J].智能计算机与应用,2014,4(4):60-67. ZHU Lichao, LI Zhijun, JIANG Shouxu. An overview of location based social network[J].Intelligent Computer and Applications, 2014, 4(4):60-67.
[2] 吴昊,刘东苏.社交网络中的好友推荐方法研究[J].现代图书情报技术,2015(1):59-65. WU Hao, LIU Dongsu. Friend recommendation in social network[J].New Technology of Library and Information Service, 2015(1):59-65.
[3] ZHENG Y, ZHANG L, XIE X, et al.Mining interesting locations and travel sequences from GPS trajectories[C] //Proceedings of the 18th International Conference on World Wide Web. New York, USA:ACM, 2009:791-800.
[4] BAO J, ZHENG Y, MOKBEL F M.Location-based and preference-aware recommendation using sparse geo-social networking data[C] // Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in GIS. New York, USA:ACM, 2012:199-208.
[5] ZHENG V W, ZHENG Y, XIE X, et al. Collaborative location and activityrecommendations with gps history data[C] //Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010:1029-1038.
[6] 翟红生,于海鹏.在线社交网络中的位置服务研究进展与趋势[J].计算机应用研究,2013, 11(30):3223-3227. ZHAI Hongsheng, YU Haipeng. Present situation and trend of research of location-based service on online social networks[J].Application Research of Computers, 2013, 11(30):3223-3227.
[7] 朱立超.基于位置的社交网络中个性化路径推荐算法的研究[D].哈尔滨:哈尔滨工业大学,2014. ZHU Lichao. LBSN based personalized routes recommendation[D].Harbin: Harbin Institute of Technology, 2014.
[8] YE M,YIN P, LEE W C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C] // Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China:ACM, 2011:325-334.
[9] YING J C, LU H C, KOU W N, et al. Urban point-of-interest recommendation by mining user check-in behaviors[C] // Proceedings of the ACM SIGKDD International Workshop on Urban Computing. Beijing, China:ACM, 2012:63-70.
[10] 朱荣鑫.基于地理位置的社交网络潜在用户和位置推荐模型研究[D].南京:南京邮电大学,2013. ZHU Rongxin. Research on the model of latent user and location recommendation in location-based social networks[D].Nanjing: Nanjing University of Posts, 2013.
[11] 任克江.基于地理信息的检索和用户数据挖掘[D].大连:大连理工大学,2013. REN Kejiang. Information retrieval and user data mining based on geographic information[D].Dalian:Dalian University of Technology, 2013.
[12] CHO E, MYERS S A, LESKOVEC J. Friendship and mobility: user movement in location-basedsocial networks[C] // Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. California, USA: ACM, 2011:1082-1090.
[13] 王立军.基于协同过滤推荐系统的数据稀疏性问题研究[D].长春:东北师范大学,2009. WANG Lijun. Research on data sparsity problem of collaborative filtering recommendation system[D]. Changchun: Northeast Normal University, 2009.
[14] SUN Dongting, HE Tao, ZHANG Fuhai. Survey of cold-start problem in collaborative filtering recommender system[J].Computer and Modernization, 2012, 1(201):59-63.
[15] FRENCE G, YE M, LEE W C. Location recommendation for out-of-town users inlocation-based social networks[C] //Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. San Francisco, USA:ACM, 2013: 721-726.
[1] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139.
[2] 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53.
[3] 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102.
[4] 杨天鹏,徐鲲鹏,陈黎飞. 非均匀数据的变异系数聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 140-145.
[5] 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149.
[6] 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44.
[7] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[8] 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36.
[9] 吉兴全,韩国正,李可军,傅荣荣,朱仰贺. 基于密度的改进K均值聚类算法在配网区块划分中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 41-46.
[10] 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73.
[11] 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50.
[12] 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34.
[13] 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33.
[14] 徐平安,唐雁,石教开,张辉荣. 基于薛定谔方程的K-Means聚类算法[J]. 山东大学学报(工学版), 2016, 46(1): 34-41.
[15] 朱红, 丁世飞. 变粒度二次聚类方法[J]. 山东大学学报(工学版), 2015, 45(3): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[2] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[3] 蔡晓军1 ,张擎1 ,柴乔林1 ,孔苏丽2 . 基于能量均衡的n分多路径路由算法[J]. 山东大学学报(工学版), 2009, 39(2): 141 -145 .
[4] 王学平,王登杰,孙英明,董磊 . 免棱镜全站仪在桥梁检测中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 105 -108 .
[5] 张宏博,苗海涛,宋修广. 长期交通荷载作用下粉砂土累积变形本构模型构建及数值积分格式[J]. 山东大学学报(工学版), 2010, 40(2): 59 -65 .
[6] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20 -26 .
[7] 周绍伟. 随机Markov跳跃系统有限时间稳定性[J]. 山东大学学报(工学版), 2016, 46(2): 78 -84 .
[8] 夏茂森 郭庆强 张斌. 生产调度广义析取规划模型求解算法[J]. 山东大学学报(工学版), 2009, 39(6): 53 -57 .
[9] 赵继增. 青岛胶州湾海底隧道涌水断层全断面帷幕注浆技术研究[J]. 山东大学学报(工学版), 2009, 39(6): 116 -120 .
[10] 蔡英1, 王刚2*. 一种基于AR模型的非线性盲源提取方法及其应用[J]. 山东大学学报(工学版), 2010, 40(5): 17 -23 .