山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 28-33.doi: 10.6040/j.issn.1672-3961.1.2015.030
樊淑炎1,2, 丁世飞1,2*
FAN Shuyan1,2, DING Shifei1,2*
摘要: 针对Graph cut算法存在着计算复杂度高及可能出现过分割等不足,提出了一种基于多尺度的改进算法,以更好地解决图像分割问题。该算法将多尺度的Normalized cut作为Graph cut算法的目标函数,避免了过分割的现象,同时将精细尺度的精确性和粗糙尺度的易分割性统一结合起来,对像素点进行采样,不仅保留了原来像素点间的关系,还降低了计算复杂度。然后运用基于谱图理论的求解方式,将问题转化为对相似矩阵求解特征值和特征向量的问题,相似度较高。试验结果表明,本研究算法能够对用户选取的图片进行有效地分割,无需用户交互,分割快速且结果精确。
中图分类号:
[1] 艾海舟, 兴军亮. 计算机视觉:算法与应用[M].北京:清华大学出版社, 2012:206-235. AI Haizhou, XING Junliang. Computer Vision:Algorithms and Applications[M]. Beijing:Tsinghua University Press, 2012:206-235. [2] 韩守东, 赵勇, 陶文兵, 等. 基于高斯超像素的快速 Graph Cuts 图像分割方法[J]. 自动化学报, 2011, 37(1):10-20. HAN Shoudong, ZHAO Yong, TAO Wenbing, et al. Gaussian super-pixel based fast image segmentation using graph Cuts[J]. Acta Automatica Sinica, 2011, 37(1):10-20. [3] OTSUKI K, KOBAYASHI Y, MUROTA K. Improved max-flow min-cut algorithms in a circular disk failure model with application to a road network[J]. European Journal of Operational Research, 2016, 248(2):396-403. [4] ZHOU Xiangyang, ZHANG Jiaxin, KULIS Brian. Power-Law graph cuts[J]. Computer Vision and Pattern Recognition, 2014:1411-1971. [5] SESHADRI K, SHALINIE S M. Parallelization of a graph-cut based algorithm for hierarchical clustering of web documents[J]. Concurrency and Computation:Practice and Experience, 2015, 27(17):5156-5176. [6] ZHANG D, JODOIN P M, LI C, et al. Novel graph cuts method for multi-frame super-resolution[J]. IEEE Signal Processing Letters, 2015, 22(12):2279-2283. [7] BOYKOV Y, JOLLY M P. Interactive graph cuts for optimal boundary and region segmentation of objects in ND images[C] //IEEE International Conference on Computer Vision. New York,USA:IEEE, 2001:105-112. [8] WU Z, LEAHY R. An optimal graph theoretic approach to data clustering:theory and its application to image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1101-1113. [9] WEI Y C, CHENG C K. Toward efficient hierarchical designs by ratio cut partition[C] //IEEE International Conference on CAD. New York:IEEE, 1989:298-301. [10] SARKAR S, SOUNDARARAJAN P. Supervised learning of large perceptual organization:graph spectral partitioning and learning automata[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(5):504-525. [11] SHI J B, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [12] DING C, HE X, ZHA H, et al. A min-max cut algorithm for graph partitioning and data clustering[C] //Proceedings of the 2001 IEEE International Conference on Data Mining. Washington D C, USA:IEEE Computer Society, 2001:107-114 [13] NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J]. Physical Review E, 2006, 74(3):36-104. [14] NEWMAN M E J. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States, 2006, 103(23):8577-8582. [15] NEWMAN M E J. Analysis of weighted networks[J].Physical Review E, 2004, 70(5):56-131. [16] LEICHT E A, NEWMAN M E J. Community structure in directed networks[J]. Physical Review Letters, 2008, 100(11):118-703. [17] COUR T, BENEZIT F, SHI J. Spectral segmentation with multiscale graph decomposition[C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). New York,USA:IEEE, 2005:1124-1131. [18] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1):48-61. SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1):48-61. [19] 孙惠泉. 图论及其应用[M]. 北京:科学出版社, 2004. [20] PACCANARO A, CHENNUBHOTLA C, CASBON J A. Spectral clustering of protein sequences[J]. Nucleic Acids Research, 2006, 34(5):1571-1580. [21] JIA H, DING S, XU X, et al. The latest research progress on spectral clustering[J]. Neural Computing and Applications, 2014, 6(24):1477-1486. [22] 李建元, 周脚根, 关佶红, 等. 谱图聚类算法研究进展[J]. 智能系统学报, 2011, 6(5):405-414. LI Jianyuan, ZHOU Jiaogen, GUAN Jihong, et al. A survey of clustering algorithms based on spectra of graphs[J]. CAAI Transactions on Intelligent Systems, 2011, 6(5):405-414. [23] LINDEBERG T. Scale-Space theory in computer vision[M].Berlin:Springer Science & Business Media, 2013. [24] 王鹏伟. 基于多尺度理论的图像分割方法研究[D]. 合肥: 中国科学技术大学, 2007. WANG Pengwei. Research on the application of multi-scale analysis method in image segmentation[D]. Hefei:University of Science And Technology of China, 2007. [25] CHEN W Y, SONG Y Q, BAI H J, et al. Parallel spectral clustering in distributed systems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):568-586. [26] 黄先楼.基于Normalized Cut的图像分割及其CUDA并行实现[D].北京:北京交通大学, 2014. HUANG Xianlou. Image segmentation based on Normalized Cut and CUDA parallel implementation[D]. Beijing:Beijing Jiaotong University, 2014. |
[1] | 胡建平,李鑫,谢琪,李玲,张道畅. 基于Delaunay三角化的二维无约束优化EMD方法[J]. 山东大学学报 (工学版), 2018, 48(5): 9-15, 37. |
[2] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
[3] | 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109. |
[4] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[5] | 胡金戈,唐雁. 基于视觉中心转移的视觉显著性检测方法[J]. 山东大学学报(工学版), 2017, 47(3): 27-33. |
[6] | 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55. |
[7] | 任玉玲, 路文, 徐红强, 何立火. 一种基于Shearlet变换的图像质量客观评价方法[J]. 山东大学学报(工学版), 2015, 45(3): 15-21. |
[8] | 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42. |
[9] | 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40. |
[10] | 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20. |
[11] | 王兴良,王立宏*,李海军. 谱聚类中特征向量的Bagging选取方法[J]. 山东大学学报(工学版), 2013, 43(2): 35-41. |
[12] | 严云洋1,2,唐岩岩2,刘以安2,张天翼3. 使用多尺度LBP特征和SVM的火焰识别算法[J]. 山东大学学报(工学版), 2012, 42(5): 47-52. |
[13] | 管燕,李存华*,仲兆满,孙兰兰. 化学分子结构图分割算法[J]. 山东大学学报(工学版), 2012, 42(5): 65-70. |
[14] | 张峰1,梁军1,高红梅2,潘猛3. 基于多频带信息融合的小电流故障选线方法[J]. 山东大学学报(工学版), 2012, 42(2): 118-123. |
[15] | 张新明, 毛文涛, 李振云. 二阶广义概率的二维Otsu阈值分割[J]. 山东大学学报(工学版), 2012, 42(1): 25-33. |
|