山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 51-57.doi: 10.6040/j.issn.1672-3961.2.2015.050
陶志伟1,张莉1,2*
TAO Zhiwei1, ZHANG Li1,2*
摘要: 提出一种基于马氏距离的分段矢量量化时间序列分类(Mahalanobis distance-based time series classification using PVQA, MPVQA)算法。该算法在继承传统算法时间复杂度的基础上,引入马氏距离,克服了欧氏距离容易受模式特征量纲影响的缺点,提高了算法精度。首先,在训练时采用分段矢量量化近似方法获得码本,然后以马氏距离为相似性度量对时间序列进行分段重构。对重构后的时间序列,同样基于马氏距离为相似性度量进行判别。在4个时间序列数据集上进行的试验结果验证了所提方法在时间序列表示和分类上的优越性。
中图分类号:
[1] FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y, et al. Fast subsequence matching in time-series databases[J]. ACM Sigmod Record, 2000, 23(2):419-429. [2] CHAN K P, FU A W C. Efficient time series matching by wavelets[C] //Proceedings of IEEE International Conference on Data Engineering. Sydney, NSW:IEEE, 1999:126-133. [3] CHAN F K P, FU A W, YU C. Haar wavelets for efficient similarity search of time-series: with and without time warping[J]. Knowledge and Data Engineering, IEEE Transactions on, 2003, 15(3):686-705. [4] LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and knowledge discovery, 2007, 15(2):107-144. [5] LI H, YANG L. Time series visualization based on shape features[J]. Knowledge-Based Systems, 2013, 41(1):43-53. [6] KEOGH E, LIN J, FU A. Hot sax: efficiently finding the most unusual time series subsequence[J].Data Mining, 2005, 11(1):226-233. [7] DELATHAUWER L, DE Moor B, VANDEWALLE J. A multilinear singular value decomposition[J]. SIAM journal on Matrix Analysis and Applications, 2000, 21(4):1253-1278. [8] WANG Q, MEGALOOIKONOMOU V. A dimensionality reduction technique for efficient time series similarity analysis[J]. Information Systems, 2008, 33(1):115-132. [9] LI H, YAND L, GUO C. Improved piecewise vector quantized approximation based on normalized time subsequences[J]. Measurement, 2013, 46(9):3429-3439. [10] DING H, TRAJCEVSKI G, SCHEUERMANN P, et al. Querying and mining of time series data: experimental comparison of representations and distance measures[J]. Proceedings of the VLDB Endowment, 2008, 1(2):1542-1552. [11] DONG Y, SUN Z, JIA H. A cosine similarity-based negative selection algorithm for time series novelty detection[J]. Mechanical Systems and Signal Processing, 2006, 20(6):1461-1472. [12] DEMAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L. The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1):1-18. [13] WANG X J, WANG L. Applications of Topsis improved based on Mahalanobis distance in supplier selection[J]. Control and Decision, 2012, 27(10):1566-1570. [14] ZHU W D, HU J L. Sparse representation classification algorithm based on Mahalanobis distance[J]. Computer Technology and Development, 2011, 21(11):27-30. [15] SASIKALA I S, BANU N. Privacy Preserving data mining using piecewise vector quantization(PVQ)[J]. International Journal of Advanced Research in Computer Science & Technology, 2014, 2(3):302-306. [16] LU Z M, WANG J X, LIU B B. An improved lossless data hiding scheme based on image VQ-index residual value coding[J]. Journal of Systems and Software, 2009, 82(6):1016-1024. [17] WANG Q, MEGALOOIKONOMOU V, FALOUTSOS C. Time series analysis with multiple resolutions[J]. Information Systems, 2010, 35(1):56-74. [18] HUANG F, ZHOU J, LU X D. The simulation of one-dimensional range profile recognition based on Mahalanobisdistance[J]. Computer Simulation, 2010, 27(3):31-34. [19] MEGALOOIKONOMOU V, LI G, WANG Q. A dimensionality reduction technique for efficient similarity analysis of time series databases[C] //Proceedings of the thirteenth ACM international conference on Information and knowledge management. New York, USA:ACM, 2004:160-161. [20] KEOGH E. Welcome to the UCR time series classification/clustering page [DB/OL]. [2015-03-12]. http://www.cs.ucr.edu/~eamonn/time-series-data/. |
[1] | 何文杰 ,何伟超,孙权森. 压缩感知重构算法的并行化及GPU加速[J]. 山东大学学报(工学版), 2018, 48(3): 110-114. |
[2] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[3] | 邓俊武,张玉民,张红娣,杜晓坤. X尾翼无人机的故障诊断和容错控制方法[J]. 山东大学学报(工学版), 2017, 47(5): 166-172. |
[4] | 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194. |
[5] | 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222. |
[6] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[7] | 张莉, 夏佩佩, 李凡长. 基于余弦相似性的供应商选择方法[J]. 山东大学学报(工学版), 2017, 47(1): 1-6. |
[8] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[9] | 侯燕,杨猛. 高效解决复杂拓扑问题的显式界面追踪算法[J]. 山东大学学报(工学版), 2016, 46(4): 15-20. |
[10] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
[11] | 王会青,孙宏伟,张建辉. 基于Map/Reduce的时间序列相似性搜索算法[J]. 山东大学学报(工学版), 2016, 46(1): 15-21. |
[12] | 陈宏兴, 周风余, 田天, 姜志飞, 陈竹敏. 服务机器人云计算平台SOA接口层模型设计[J]. 山东大学学报(工学版), 2015, 45(4): 31-39. |
[13] | 刘波,王有志*,安俊江,王艺霖,袁泉. 车辆—路面空间耦合振动模型及其动力响应分析[J]. 山东大学学报(工学版), 2014, 44(3): 83-89. |
[14] | 麻常辉1,冯江霞2,蒋哲1,武乃虎1,吕晓禄3. 基于时间序列和神经网络法的风电功率预测[J]. 山东大学学报(工学版), 2014, 44(1): 85-89. |
[15] | 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51. |
|