您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 62-69.doi: 10.6040/j.issn.1672-3961.0.2024.219

• 电气工程——智慧能源专题 • 上一篇    下一篇

基于云边协同和图神经网络的电动汽车充电站负荷预测方法

邓彬1,张宗包2,赵文猛1,罗新航3*,吴秋伟3   

  1. 1.南方电网科学研究院, 广东 广州 510663;2.深圳供电局有限公司, 广东 深圳 518001;3.清华大学清华深圳国际研究生院, 广东 深圳 518055
  • 出版日期:2025-10-20 发布日期:2025-10-17
  • 作者简介:邓彬(1989— ),男,湖北大治人,高级工程师,硕士,主要研究方向为电网自动化. E-mail:15219495096@163.com. *通信作者简介:罗新航(2000— ),男,江西乐平人,硕士研究生,主要研究方向为负荷预测. E-mail:1743504495@qq.com
  • 基金资助:
    深圳供电局有限公司科技资助项目(SZKJXM20220036)

Cloud-edge collaborative and graph neural network based load forecasting method for electric vehicle charging stations

DENG Bin1, ZHANG Zongbao1, ZHAO Wenmeng1, LUO Xinhang3*, WU Qiuwei3   

  1. DENG Bin1, ZHANG Zongbao1, ZHAO Wenmeng1, LUO Xinhang3*, WU Qiuwei3(1. Electric Power Research Institute, CSG, Guangzhou 510663, Guangdong, China;
    2. Shenzhen Power Supply Co., Ltd., Shenzhen 518001, Guangdong, China;
    3. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • Online:2025-10-20 Published:2025-10-17

摘要: 针对电动汽车充电站预测方法在隐私保护、计算效率和预测精度方面的问题,提出一种基于云边协同和图神经网络的电动汽车充电站负荷预测方法。在云端开发一个基于嵌入的隐私保护模块,通过嵌入变换重构输入数据以预防潜在隐私泄露风险;开发一种基于聚类的图结构表征生成方法,以提供额外时空信息,实现更为精准的预测;基于云端的图结构表征,为客户端设计个性化图神经网络预测模型,在保护隐私前提下实现不同地区电动汽车充电站协同训练。在Perth数据集的试验结果表明,模型和基准方法相比具有更高预测精度,本研究提出的云边协同框架能够有效提升基于图神经网络的算法在电动汽车充电站负荷预测任务上的表现。

关键词: 云边协同, 图神经网络, 电动汽车充电站, 负荷预测

Abstract: Aiming at the problems of privacy protection, computational efficiency, and predictive accuracy in existing forecasting methods for electric vehicle charging stations, a cloud-edge collaborative and graph neural network based load forecasting approach was proposed. A privacy preserving module based on embedding is developed in the cloud, which reconstructs the input data through embedding transformation to prevent potential privacy leakage risks. A method for generating representation with graph structure based on clustering is proposed to provide additional spatiotemporal information and achieve more accurate forecasting. Personalized graph neural network forecasting models are designed for clients based on cloud's graph structure representation, enabling collaborative training of electric vehicle charging stations in different regions while protecting privacy. Experimental results on the Perth dataset demonstrate that the model outperforms benchmark methods in predictive accuracy and that the cloud-edge collaborative framework proposed in this study significantly enhances the performance of graph neural network algorithms in the task of load forecasting for electric vehicle charging stations.

Key words: cloud-edge collaborative, graph neural network, electric vehicle charging stations, load forecasting

中图分类号: 

  • TP391
[1] 杨挺,覃小兵,冯相为,等.计及用户充电行为与隐私保护的联邦学习电动汽车短期充电负荷预测[J].高电压技术, 2024, 50(10): 4512-4519. YANG Ting, QIN Xiaobing, FENG Xiangwei, et al. Short-term charging load prediction of federated learning electric vehicles after accounting for user charging behavior and privacy protection[J]. High Voltage Engineering, 2024, 50(10): 4512-4519.
[2] ZHANG C, SHEN H T, TAO P, et al. Electric vehicle charging pile capacity planning based on normal distribution Monte Carlo sampling model [J]. International Journal of Emerging Electric Power Systems, 2024, 25(2): 189-196.
[3] IEA. Global EV Outlook 2024[R/OL].(2024-04-23)[2024-05-17]. http://www.iea.org/reports/global-ev-outlook-2024
[4] KIM H J, KIM M K. Spatial-Temporal graph convolu-tional-based recurrent network for electric vehicle charging stations demand forecasting in energy market[J]. IEEE Transactions on Smart Grid, 2024, 15(4):3979-3993.
[5] AMINI M H, KARGARIAN A, KARABASOGLU O. ARIMA-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation[J]. Electric Power Systems Research, 2016, 140:378-390.
[6] XU X B, LIU W X, ZHOU X, et al. Short-term load forecasting for the electric bus station based on GRA-DE-SVR[C] // Proceedings of 2014 IEEE Innovative Smart Grid Technologies-Asia(ISGT ASIA). Kuala Lumpur, Malaysia:IEEE,2014:388-393.
[7] MAJIDPOUR M, QIU C, CHU P, et al. Forecasting the EV charging load based on customer profile or station measurement?[J]. Applied Energy, 2016, 163:134-141.
[8] DABBAGHJAMANESH M, MOEINI A, KAVOUSI-FARD A. Reinforcement learning-based load forecasting of electric vehicle charging station using Q-learning technique[J]. IEEE Transactions on Industrial Informatics, 2020, 17(6): 4229-4237.
[9] VERMAAK J, BOTHA E C. Recurrent neural networks for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(1): 126-132.
[10] WANG S Y, ZHUGE C X, SHAO C F, et al. Short-term electric vehicle charging demand prediction: a deep learning approach[J]. Applied Energy, 2023, 340: 121032.
[11] 石立国,李延真,刘继彦,等.电动汽车充电站超短期充电负荷预测的改进GRU方法[J]. 供用电, 2023, 40(6):42-47. SHI Liguo, LI Yanzhen, LIU Jiyan, et al. An Improved GRU method for ultra-short-term charging load forecasting at electric vehicle charging stations[J]. Distribution & Utilization, 2023, 40(6): 42-47.
[12] ZHANG X, CHAN K W, LI H R, et al. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model[J]. IEEE Transactions on Cybernetics, 2020, 51(6):3157-3170.
[13] 张延宇,张智铭,刘春阳,等.基于动态自适应图神经网络的电动汽车充电负荷预测[J].电力系统自动化,2024,48(7):86-93. ZHANG Yanyu, ZHANG Zhiming, LIU Chunyang, et al. Electric vehicle charging load prediction based on dynamic adaptive graph neural network[J]. Automation of Electric Power Systems, 2024, 48(7): 86-93.
[14] ZHANG Z B, HAO J, ZHAO W M, et al. Multiscale spatio-temporal enhanced short-term load forecasting of electric vehicle charging stations[C] // Proceedings of the 6th Asia Energy and Electrical Engineering Symposium(AEEES). Chengdu, China:IEEE, 2024:1180-1185.
[15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[16] WANG Y X, LIU M Q, BAO Z J, et al. Short-term load forecasting with multi-source data using gated recurrent unit neural networks[J]. Energies, 2018, 11(5):1138, 2018.
[17] ZENG A L, CHEN M X, ZHANG L, et al. Are transformers effective for time series forecasting?[C] // Proceedings of the AAAI conference on artificial intelligence. Washington, D.C., USA:AAAI, 2023:11121-11128.
[18] SHI J K, ZHANG W G, BAO Y, et al. Load forecasting of electric vehicle charging stations: attention based spatiotemporal multi-graph convolutional networks[J]. IEEE Transactions on Smart Grid, 2023, 15(3):3016-3027.
[1] 林振宇,邵蓥侠. 基于盖根堡多项式最佳平方近似的谱图网络[J]. 山东大学学报 (工学版), 2024, 54(5): 93-100.
[2] 常新功,苏敏惠,周志刚. 基于进化集成的图神经网络解释方法[J]. 山东大学学报 (工学版), 2024, 54(4): 1-12.
[3] 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79.
[4] 赵涛,张宁,王小超,马川义,田源,张圣涛,杨梓梁. 基于图神经网络轨迹预测的合流区交通冲突预测方法[J]. 山东大学学报 (工学版), 2024, 54(2): 36-46.
[5] 陈雷,赵耀帅,林彦,郭晟楠,万怀宇,林友芳. 交通流量预测的时间异质性图注意力网络[J]. 山东大学学报 (工学版), 2023, 53(5): 29-36.
[6] 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114.
[7] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[8] 李笋,王超,张桂林,徐志根,程涛,王义元,王瑞琪. 基于支持向量回归的短期负荷预测[J]. 山东大学学报(工学版), 2017, 47(6): 52-56.
[9] 马庆,李歧强*. 基于电力需求响应的公共建筑基线负荷预测[J]. 山东大学学报(工学版), 2011, 41(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .