您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 36-46.doi: 10.6040/j.issn.1672-3961.0.2023.230

• 交通运输工程—智慧交通专题 • 上一篇    

基于图神经网络轨迹预测的合流区交通冲突预测方法

赵涛1,张宁2,王小超3,马川义2,田源1*,张圣涛2,杨梓梁1   

  1. 1.山东大学齐鲁交通学院, 山东 济南 250002;2.山东高速集团有限公司, 山东 济南 250014;3.济南新旧动能转换起步区管理委员会, 山东 济南 250000
  • 发布日期:2024-04-17
  • 作者简介:赵涛(1999— ),男,山东潍坊人,硕士研究生,主要研究方向为智慧交通. E-mail:202215419@mail.sdu.edu.cn. *通信作者简介:田源(1990— ),男,山东济宁人,助理研究员,硕士生导师,博士,主要研究方向为智慧交通. E-mail:yuantian@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52002224);山东省重点研发计划重大科技创新工程项目(2020CXGC010118)

A traffic conflict prediction method for merging areas based on trajectory prediction with graph neural network

ZHAO Tao1, ZHANG Ning2, WANG Xiaochao3, MA Chuanyi2, TIAN Yuan1*, ZHANG Shengtao2, YANG Ziliang1   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    2. Shandong High-Speed Co., Ltd., Jinan 250014, Shandong, China;
    3. Governing Board of Jinan Start-up Area for Growth Drivers Transformation, Jinan 250000, Shandong, China
  • Published:2024-04-17

摘要: 为保证高速公路合流区路段的交通安全,减少交通冲突,提出一种基于图神经网络轨迹预测的合流区交通冲突预测方法。该方法包括基于时空图卷积神经网络的轨迹预测方法以及基于预测轨迹的交通冲突预测方法。利用Mirror-Traffic数据集进行交通冲突指标阈值计算,并通过一定的轨迹数据处理方法得到适用的数据,进行网络模型训练和验证。结果表明,严重冲突的后侵入时间(post-encroachment time, PET)阈值为2.0 s,轻微冲突的PET阈值为5.36 s。该轨迹预测方法的平均位移误差为1.5 m,最终位移误差为2.1 m,时间成本为0.59 s,与其他4种方法相比,本研究方法的轨迹预测整体效果最好。在交通冲突预测方面,采用准确率、精确率、召回率和F1评价交通冲突预测模型,结果表明交通冲突预测效果较好。本研究提出的方法保证了预测的正确性,增强了预警系统下行车的安全性,提高了预警系统下的合流区通行效率。

关键词: 图神经网络, 轨迹预测, 交通冲突预测, 合流区, 交通安全

中图分类号: 

  • U495
[1] EUSTACE D, AYLO A, MERGIA W Y. Crash frequency analysis of left-side merging and diverging areas on urban freeway segments: a case study of 1-75 through downtown Dayton, Ohio [J]. Transportation Research Part C-Emerging Technologies, 2015, 50: 78-85.
[2] 吴建清,宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报(工学版), 2020, 50(4): 52-69. WU Jianqing, SONG Xiuguang. Review on smart highways critical technology[J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 52-69.
[3] 吴建清,王其峰,厉周缘,等. 互通式立交风险冲突识别与预警综述[J]. 山东大学学报(工学版), 2022, 52(6): 1-13. WU Jianqing, WANG Qifeng, LI Zhouyuan, et al. Review of risk conflict identification and early warning for interchange[J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 1-13.
[4] ZHU Shunying, JIANG Ruoxi, WANG Hong, et al. Review of research on traffic conflict techniques [J]. China Journal of Highway and Transport, 2020, 33(2): 15-33.
[5] HYDEN Christer. The development of a method for traffic safety evaluation: the swedish traffic conflicts technique[M]. Lund, Sweden: Bulletin Lund Institute of Technology Department, 1987:1-57.
[6] SVENSSON Ase. A method for analysing the traffic process in a safety perspective[M]. Lund, Sweden: Lund Institute of Technology, 1998: 1-117.
[7] 李万高,赵雪梅,孙德厂. 基于改进贝叶斯方法的轨迹预测算法研究[J]. 计算机应用,2013, 33(7): 1960-1963. LI Wangao, ZHAO Xuemei, SUN Dechang. Prediction of trajectory based on modified Bayesian inference[J]. Journal of Computer Applications, 2013, 33(7): 1960-1963.
[8] 张凯,熊家军,李凡,等. 基于意图推断的高超声速滑翔目标贝叶斯轨迹预测[J]. 宇航学报, 2018, 39(11): 1258-1265. ZHANG Kai, XIONG Jiajun, LI Fan, et al. Bayesian trajectory prediction for a hypersonic gliding reentry vehicle based on intent inference[J]. Journal of Astronautics, 2018, 39(11): 1258-1265.
[9] 剡鹏. 考虑时空约束的隐马尔可夫车辆轨迹预测方法[D]. 哈尔滨: 哈尔滨工业大学, 2021. YAN Peng. A HMM-based vehicle trajectory prediction method considering space-time constraints [D]. Harbin: Harbin Institute of Technology, 2021.
[10] 张迎亚. 基于隐马尔可夫模型的车辆轨迹预测算法的研究[D]. 南京: 南京邮电大学, 2017. ZHANG Yingya. Rearch on the algorithm of vehicle trajectoryprediction based on HMM[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017.
[11] JI Xuewu, FEI Cong, HE Xiangkun, et al. Intention recognition and trajectory prediction for vehicles using LSTM network [J]. China Journal of Highway and Transport, 2019, 32(6): 34-42.
[12] 蔡游游. 基于RNN-LSTM网络的车辆轨迹预测研究[D]. 长春: 吉林大学, 2021. CAI Youyou. Vehicle trajectory prediction based on RNN-LSTM network[D]. Changchun: Jilin University, 2021.
[13] 武林. 基于GRU-ATT的车辆驾驶意图识别与轨迹预测[D]. 北京: 中国矿业大学, 2022. WU Lin. Vehicle driving intention recognition and trajectory prediction based on GRU-ATT[D]. Beijing: China University of Mining and Technology, 2022.
[14] MENG Xianwei, TANG Jinjun, WANG Zhe. Trajectory prediction of vehicles based on LSTM-AdaBoost model considering lane-changing intention [J]. Computer Engineering and Applications, 2022, 280-287.
[15] GAO Jiyang, SUN Chen, ZHAO Hang, et al. Vectornet: encoding hd maps and agent dynamics from vectorized representation[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, USA: IEEE, 2020: 11522-11530.
[16] MOHAMED A, KUN Q, ELHOSEINY M, et al. Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction [C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle, USA: IEEE, 2020: 14412-14420.
[17] VASWANI Ashish, SHAZEER Noam, PARMAR Niki, et al. Attention is all you need [C] //Advances in Neural Information Processing Systems 30(NIPS 2017). Long Beach, USA: NIPS, 2017.
[18] 吴翊恺,胡启洲,吴啸宇. 车联网背景下的机动车辆轨迹预测模型[J]. 东南大学学报(自然科学版), 2022, 52(6): 1199-1208. WU Yikai, HU Qizhou, WU Xiaoyu. Vehicle trajectory prediction model in the context of internet of vehicles[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(6): 1199-1208.
[19] LI Wenli, HAN Di, SHI Xiaohui, et al. Vehicle trajectory prediction based on spatial-temporal attention mechanism [J]. China Journal of Highway and Transport, 2023, 36(1): 226-239.
[20] GUPTA Agrim, JOHNSON Justin, LI Feifei, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA: IEEE, 2018: 2255-2264.
[21] WEN Huiying, ZHANG Weigang, ZHAO Sheng. Vehicle lane-change trajectory prediction model based on generative adversarial networks[J]. Journal of South China University of Technology(Natural Science Edition), 2020, 48(5): 32-40.
[22] 赵小明. 基于生成对抗网络的车辆轨迹预测[D]. 长春: 吉林大学, 2022. ZHAO Xiaoming. Trajectory prediction of vehicles based on GAN[D]. Changchun: Jilin University, 2022.
[23] 王文博,严锋. 基于贝叶斯模型的高速公路合流区交通冲突预测[J]. 公路, 2023, 68(7): 328-332. WANG Wenbo, YAN Feng. Prediction of traffic conflict in expressway merging area based on Bayesian model[J]. Highway, 2023, 68(7): 328-332.
[24] 郑展骥,项乔君,李涵,等. 互通立交分流区交通冲突预测模型[J]. 中国安全科学学报,2018, 28(6): 85-90. ZHENG Zhanji, XIANG Qiaojun, LI Han, et al. Model for predicting traffic conflict in interchange diverging area[J]. China Safety Science Journal, 2018, 28(6): 85-90.
[25] XIANG Qiaojun, LU Chuan, WU Qun, et al. Research on traffic conflict prediction model of unsignalized highway intersection [J]. Journal of Highway and Transportation Research and Development, 2009, 26(5): 132-135.
[26] DEDOMINICIS Dario, CONTE Claudia, MATTEI Fausta, et al. Trajectory prediction and conflict detection for unmanned traffic management: a performance comparison of machine-learning-based approaches[C] //2022 IEEE International Workshop on Metrology for Aerospace(IEEE Metroaerospace 2022). Pisa, Italy: IEEE, 2022: 633-638.
[27] ISLAM Zubayer, ABDELATY Mohamed. Traffic conflict prediction using connected vehicle data[J]. Analytic Methods in Accident Research, 2023: 39.
[28] YAN Sijie, XIONG Yuanjun, LIN Dahua, et al. Spatial temporal graph convolutional networks for skeleton-based action recognition[C] // Thirty-Second AAAI Conference on Artificial Intelligence / Thirtieth Innovative Applications of Artificial Intelligence Conference / Eighth AAAI Symposium on Educational Advances in Atificial Intelligence. New Orleans, USA: AAAI, 2018: 7444-7452.
[29] 关志强. 基于交通冲突技术的高速公路施工区安全性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. GUAN Zhiqiang. Study on the safety of freeway work zone based on traffic conflict technique[D]. Harbin: Harbin Institute of Technology, 2011.
[1] 杨巨成,魏峰,林亮,贾庆祥,刘建征. 驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报 (工学版), 2024, 54(2): 1-12.
[2] 宋修广,赵涛,毕研美,张紫豪,杜聪,田源,孔晓光. 光纤传感技术在道路交通中的应用[J]. 山东大学学报 (工学版), 2024, 54(2): 13-26.
[3] 赵晓焱,高源志,张佳乐,张俊娜,袁培燕. 一种基于轨迹预测的车联网边缘卸载策略[J]. 山东大学学报 (工学版), 2024, 54(1): 52-62.
[4] 陈雷,赵耀帅,林彦,郭晟楠,万怀宇,林友芳. 交通流量预测的时间异质性图注意力网络[J]. 山东大学学报 (工学版), 2023, 53(5): 29-36.
[5] 吴建清,王其峰,厉周缘,田源. 互通式立交风险冲突识别与预警综述[J]. 山东大学学报 (工学版), 2022, 52(6): 1-13.
[6] 徐晓斌,王琪,高彬,孙志于,梁中军,王尚广. 异构网络中基于轨迹预测的资源预分配方案[J]. 山东大学学报 (工学版), 2022, 52(4): 12-19.
[7] 吕国仁,闫书明,白书锋,贾 宁,马 亮 . 高速公路新型波形梁护栏端头实车碰撞性能研究[J]. 山东大学学报(工学版), 2008, 38(4): 47-52 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!