您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (5): 70-77.doi: 10.6040/j.issn.1672-3961.0.2024.203

• 电气工程——智慧能源专题 • 上一篇    

考虑日食过境影响的光伏出力与爬坡速率预测方法

陈浩然1,祁鑫2,田志浩2,李桐2,刘刚2,李常刚1*   

  1. 1.电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061;2.国网宁夏电力有限公司, 宁夏 银川 750001
  • 发布日期:2025-10-17
  • 作者简介:陈浩然(2000— ),男,山东临沂人,硕士研究生,主要研究方向为极端天气下的电力系统安全风险评估. E-mail: chenhaoran2022@mail.sdu.edu.cn. *通信作者简介:李常刚(1984— ),男,山东日照人,教授,博士生导师,博士,主要研究方向为电力系统运行与控制. E-mail: lichgang@sdu.edu.cn
  • 基金资助:
    国家电网公司科技资助项目(5108-202218280A-2-266-XG)

Method for predicting photovoltaic generation and ramp rate considering the impact of solar eclipse transit

CHEN Haoran1, QI Xin2, TIAN Zhihao2, LI Tong2, LIU Gang2, LI Changgang1*   

  1. CHEN Haoran1, QI Xin2, TIAN Zhihao2, LI Tong2, LIU Gang2, LI Changgang1*(1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    2. State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, Ningxia, China
  • Published:2025-10-17

摘要: 准确预测日食过境期间光伏的出力与爬坡速率对于缓解系统调峰压力、维持系统的电力电量平衡具有重要意义。提出一种日内太阳辐射强度模型构建方法,用于表征某地太阳辐射强度日内特性;分别构建日全食、日环食、日偏食过境情况下的太阳遮挡率模型,修正日内太阳辐射强度模型;提出一种考虑温度对于光伏效率影响的光伏出力模型,给出光伏机组的爬坡速率与计算模型。算例部分以2020年6月21日发生于我国的日环食事件为例,对某省100 kW光伏场站出力情况进行反演分析,验证所提方法的有效性。探究不同遮挡程度的日食对于光伏爬坡速率的影响,指出遮挡程度越大的日食所对应的光伏爬坡速率越高,日全食下甚至可达正常情况的4倍以上,需要调度人员高度重视。

关键词: 日食, 太阳辐射强度, 遮挡率, 光伏出力, 光伏爬坡速率

Abstract: Accurately predicting the output and ramp rate of photovoltaic(PV)systems during an eclipse is of significant importance for alleviating peak-shaving pressure and maintaining the balance of power consumption. A method for constructing an intra-day solar radiation intensity model was proposed, which characterized the daily characteristics of solar radiation intensity at a certain location. Subsequently, models for the shading percentage of the sun during total, annular, and partial eclipses were respectively established to update the intra-day solar radiation intensity model. Next, the PV generation model considering the impact of temperature on efficiency was introduced, along with the ramp rate and calculation models for PV units.In the case study section, the annular eclipse event that occurred on June 21, 2020, in China was used as an example to retrospectively analyze the output of a 100 kW PV station, thereby validating the effectiveness of the proposed method. Furthermore, the study explored the impact of different percentages of eclipse obscuration on the PV ramp rate, indicating that eclipses with greater obscuration corresponded to higher PV ramp rates. The PV ramp rate under a total solar eclipse was found to even reach more than 4 times the normal situation, and dispatch personnel were required to attach great importance to it.

Key words: solar eclipse, solar radiation intensity, shading percentage, PV generation, PV ramp rate

中图分类号: 

  • TM615
[1] 国家能源局.2024年可再生能源并网运行情况[EB/OL].(2025-01-27)[2025-07-03]. https://www.nea.gov.cn/20250221/e10f363cabe3458aaf78ba4558970054/c.html
[2] 和萍, 宫智杰, 靳浩然, 等. 高比例可再生能源电力系统调峰问题综述[J].电力建设, 2022, 43(11): 108-121. HE Ping, GONG Zhijie, JIN Haoran, et al. Review of peak-shaving problem of electric power system with high proportion of renewable energy[J]. Electric Power Construction, 2022, 43(11): 108-121.
[3] CHENG D L, MATHER B A, SEGUIN R, et al. Photovoltaic(PV)impact assessment for very high penetration levels[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 295-300.
[4] 刘纯, 马烁, 董存, 等. 欧洲3·20日食对含大规模光伏发电的电网运行影响及启示[J]. 电网技术, 2015, 39(7): 1765-1772. LIU Chun, MA Shuo, DONG Cun, et al. Review and experiences of the European solar eclipse's impact on power grid operation with significant PV generation[J]. Power System Technology, 2015, 39(7): 1765-1772.
[5] 李常刚, 陈浩然, 齐航, 等. 一种面向日食事件的光伏场站出力预测方法及系统: CN202410153762.9[P]. 2024-05-10.
[6] 秦放, 董存, 崔方, 等. 一种日食期间光伏电站出力爬坡率预测方法及装置: CN114117712A[P]. 2022-03-01.
[7] LIBRA M, KOURÍM P, POULEK V. Behavior of photovoltaic system during solar eclipse in Prague[J]. International Journal of Photoenergy, 2016, 2016: 2653560.
[8] MÁSLO K. Impact of photovoltaics on frequency stability of power system during solar eclipse[J]. IEEE Transactions on Power Systems, 2015, 31(5): 3648-3655.
[9] 韩学山, 王心仪, 杨明, 等. 新能源爬坡事件综述及展望[J]. 山东大学学报(工学版), 2021, 51(5): 53-62. HAN Xueshan, WANG Xinyi, YANG Ming, et al. Review and prospect of renewable energy ramp events[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 53-62.
[10] KILLINGER S, KREIFELS N, BURGER B, et al. Impact of the solar eclipse from 20th March 2015 on the German electrical supply: simulation and analysis[J]. Energy Technology, 2016, 4(2): 288-297.
[11] 周滢垭, 廖宇. 2015年3月20日日食对德国电网的影响[J]. 南方电网技术, 2015, 9(5): 15-18. ZHOU Yingya, LIAO Yu. Influence of solar eclipse on March 20, 2015 on German power grid[J]. Southern Power System Technology, 2015, 9(5): 15-18.
[12] 梁志峰, 秦放, 崔方. “6·21”日环食对光伏发电及电网运行影响分析[J]. 电力系统自动化, 2021, 45(7): 1-7. LIANG Zhifeng, QIN Fang, CUI Fang. Impact analysis of annular solar eclipse on June 21, 2020 in China on photovoltaic power generation and power grid operation[J]. Automation of Electric Power Systems, 2021, 45(7): 1-7.
[13] Regional Group Continental Europe and Synchronous Area Great. Solar eclipse 2015[R]. [S.l.: s.n.] , 2015:16-18.
[14] KURINEC S K, KUCER M, SCHLEIN B. Monitoring a photovoltaic system during the partial solar eclipse of August 2017[J]. EPJ Photovoltaics, 2018, 9: 7.
[15] 李西明. 异常天气对光伏并网系统出力的影响[D]. 北京:华北电力大学, 2017: 20-21. LI Ximing. Impact of abnormal weather on power output of photovoltaic system[D]. Beijing: North China Electric Power University, 2017: 20-21.
[16] YILMAZ H, KOL S, POYRAZOGLU G. Insights for the next solar eclipse in Turkish grid with increased solar capacity[C] //2023 IEEE PES GTD International Conference and Exposition. New York, USA, IEEE:194-198.
[17] 张华彬, 杨明玉. 基于最小二乘支持向量机的光伏出力超短期预测[J]. 现代电力, 2015, 32(1): 70-75. ZHANG Huabin, YANG Mingyu. Ultra-short-term forecasting for photovoltaic power output based on least square support vector machine[J]. Modern Electric Power, 2015, 32(1): 70-75.
[18] 王春龙, 杨霭蓉, 李金平, 等. 多因素耦合对光伏组件表面温度影响的试验研究[J]. 太阳能学报, 2019, 40(1): 112-118. WANG Chunlong, YANG Airong, LI Jinping, et al. Experimental study on effect of multi-factor coupling on surface temperature of photovoltaic module[J]. Acta Energiae Solaris Sinica, 2019, 40(1): 112-118.
[19] LIN D Y, LI X S, DING S Y, et al. Strategy comparison of power ramp rate control for photovoltaic systems[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(4): 329-341.
[20] RIQUELME-DOMINGUEZ J M, GONZALEZ-LONGATT F M, MARTINEZ S. Decoupled photovoltaic power ramp-rate calculation method for perturb and observe algorithms[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(4): 932-940.
[21] 张东英, 代悦, 张旭, 等.风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42(6): 1783-1792. ZHANG Dongying, DAI Yue, ZHANG Xu, et al. Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42(6): 1783-1792.
[22] 梁志祥, 刘晓明, 牟颖, 等. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报(工学版), 2019, 49(5): 24-28. LIANG Zhixiang, LIU Xiaoming, MU Ying, et al. Prediction method of wind power and PV ramp event based on deep learning[J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 24-28.
[23] 环球信息网. 中国日食时间表[EB/OL].(2021-05-07)[2025-05-05]. https://www.gpbctv.com/edu/202105/185720.html
[24] 中国气象数据网. 中国地面气象站基本气象要素观测数据[EB/OL].(2024-07-17)[2025-05-05]. https://www.nmic.cn/site/theme.html
[1] 张茂远, 孔祥强, 杨义孟, 刘晓东. 辐射强度对直膨式太阳能热泵系统性能的影响[J]. 山东大学学报 (工学版), 2019, 49(5): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!