您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 134-138.doi: 10.6040/j.issn.1672-3961.0.2018.018

• • 上一篇    

pH对Aβ42小纤维的结构影响

赵伟,艾洪奇*   

  1. 济南大学化学化工学院, 山东 济南 250022
  • 收稿日期:2018-01-09 出版日期:2018-04-20 发布日期:2018-01-09
  • 通讯作者: 艾洪奇(1968— ),男,山东日照人,教授,博士,主要研究方向为生化及材料分子结构性质的计算机模拟与设计. ;E-mail: chm-aihq@ujn.edu.cn E-mail:1371982567@qq.com
  • 作者简介:赵伟(1992— ),女,山东青岛人,硕士研究生,主要研究方向为酸性对Aβ42低聚物和纤维的影响. E-mail: 1371982567@qq.com
  • 基金资助:
    山东省自然科学基金面上资助项目(ZR2017MB008)

pH effect on the structure of Aβ42 fibrils

ZHAO Wei, AI Hongqi*   

  1. School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
  • Received:2018-01-09 Online:2018-04-20 Published:2018-01-09

摘要: 为了从原子层面上理解pH对Aβ42小纤维结构的影响,采用分子动力学模拟方法,通过分析二级结构,每条链的β-sheet含量以及扭转角,研究pH 4.0~7.5范围内Aβ42三聚体和五聚体的结构以及性质变化。研究结果表明,在pH 4.0~7.5范围内,pH对三聚体和五聚体的二级结构没有明显的影响,但是对小纤维每条链的β-sheet的含量有影响;扭转角以及小纤维的生长都是由纤维的奇数端引发,回应了关于纤维生长机制的意见分歧。

关键词: 纤维生长, 扭转角, Aβ42, 小纤维, pH 影响, 奇数端

Abstract: To find details at atomic level for the association between structure of Aβ42 fibrils and pH, molecular dynamic simulations were preformed to study the changes in structure and property of Aβ42 fibrils at pH 4.0~7.5, by analyzing secondary structures and contents of β-sheet per chain as well as twist angles. The results showed that pH caused little change in secondary structure of fibrils. However, difference existed in content of β-sheet per chain under different pHs. The changes of twist angles and growth of fibril were initiated by the odd tip, responding to the divergence in growth mechanism of fibril.

Key words: Aβ42, pH effect, fibrils, twist angle, fibril growth, odd tip

中图分类号: 

  • O64
[1] PRINCE M, BRYCE R, ALBANESE E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers & Dementia, 2013, 9(1):63-75.
[2] 陈庆华,张凤强,李立新, 等. 阿尔茨海默病发病机制和诊断技术研究进展[J]. 中华老年心脑血管病杂志, 2018, 20(1): 108-110. CHEN Qinghua, ZHANG Fengqiang, LI Lixin, et al. Advances in the pathogenesis and diagnostic techniques of Alzheimers disease[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2018, 20(1):108-110.
[3] 运会喜. 阿尔茨海默病治疗药物研究进展[J]. 中国老年学杂志, 2017, 37(24): 6269-6272. YUN Huixi. Progress in the treatment of drugs for Alzheimers Disease[J]. Chinese Journal of Gerontology, 2017, 37(24):6269-6272.
[4] CACCAMO A, ODDO S, SUGARMAN M C, et al. Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders[J]. Neurobiol of Aging, 2005, 26(5): 645-654.
[5] HARDY J, SELKOE D J. The Amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.
[6] MASMAN M F, EISEL U L M, CSIZMADIA I G, et al. In silico study of full-length Amyloid β1-42 tri-and penta-oligomers in solution[J]. The Journal of Physical Chemistry B, 2009, 113(34): 11710-11719.
[7] NGO S T, HUNG H M, TRUONG D T, et al. Replica exchange molecular dynamics study of the truncated amyloid beta(11-40)trimer in solution[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 14876-14887.
[8] SU Y, CHANG P T. Acidic pH promotes the formation of toxic fibrils from beta-amyloid peptide[J]. Brain Research, 2001, 893(1-2): 287-291.
[9] YUN S, URBANC B, CRUZ L, et al. Role of electrostatic interactions in Amyloid β-protein(Aβ)oligomer formation: a discrete molecular dynamics study[J]. Biophysical, 2007, 92(11): 4064-4077.
[10] TIPPING K W, KARAMANOS T K, JAKHRIA T, et al. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5691-5696.
[11] SHAMMAS S L, KNOWLES T P J, BALDWIN A J, et al. Perturbation of the stability of Amyloid fibrils through alteration of electrostatic interactions[J]. Biophysical Journal, 2011, 100(11): 2783-2791.
[12] MILLER Y, MA B, TSAI C J, et al. Hollow core of Alzheimers Aβ42 Amyloid observed by cryoEM is relevant at physiological pH[J]. Proceedings of the National Academy of Sciences, 2010, 107(32): 14128-14133.
[13] GAL BITAN M D K, ALEKSEY LOMAKIN, SABRINA S V, et al. Amyloid β-protein(Aβ)assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. Proceedings of the National Academy of Sciences, 2003, 100(1): 330-335.
[14] KLYUBIN I, WALSH D M, LEMERE C A, et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo[J]. Nature Medicine, 2005, 11(5): 556-561.
[15] CLEARY J P, WALSH D M, HOFMEISTER J J, et al. Natural oligomers of the Amyloid-β protein specifically disrupt cognitive function[J]. Nature Neuroscience, 2005, 8(1): 79-84.
[16] ZHAO J, WANG Q, LIANG G, et al. Molecular dynamics simulations of low-ordered Alzheimer β-Amyloid oligomers from dimer to hexamer on self-assembled monolayers[J]. Langmuir, 2011, 27(24): 14876-14887.
[17] L HRS T, RITTER C, ADRIAN M, et al. 3D structure of Alzheimers Amyloid-β(1—42)fibrils[J]. Proceedings of the National Academy of Sciences, 2005, 102(48): 17342-17347.
[18] PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. Journal of Computational Chemistry, 2004, 25(13): 1605-1612.
[19] ANANDAKRISHNAN R, AGUILAR B, ONUFRIEV A V. H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations[J]. Nucleic Acids Research, 2012, 40(W1): W537-W541.
[20] DAVID V D S, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
[21] HORNAK V, ABEL R, OKUR A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters[J]. Proteins, 2006, 65(3): 712-725.
[22] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N(·overs)log(N)method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
[23] UVERSKY V N, GILLESPIE J R, FINK A L. Why are "natively unfolded" proteins unstructured under physiologic conditions?[J]. Proteins, 2000, 41(3): 415-427.
[24] SCHWEIKER K L, ZARRINEAFSAR A, DAVIDSON A R, et al. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions[J]. Protein Science, 2007, 16(12): 2694-2702.
[25] TREVINO S R, SCHAEFER S, SCHOLTZ J M, et al. Increasing protein conformational stability by optimizing β-turn sequence[J]. Journal of Molecular Biology, 2007, 373(1): 211-218.
[26] GURRY T, STULTZ C M. Mechanism of Amyloid-β fibril elongation[J]. Biochemistry Journal, 2014, 53(44): 6981-6991.
[27] PAPARCONE R, BUEHLER M J. Microscale structural model of Alzheimer Aβ(1—40)amyloid fibril[J]. Applied Physics Letters, 2009, 94(24): 243904-243904-3.
[28] HAN W, SCHULTEN K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations[J]. Journal of the American Chemical Society, 2014, 136(35): 12450-12460.
[29] DONG M, PAUL T J, HOFFMANN Z, et al. Structural and material properties of Amyloid Aβ40/42 fibrils[J]. ChemPhysChem, 2016, 17(16):2558-2566.
[30] ADRIEN M, XIAO D, NORMAND M, et al. Role of the region 23-28 in Aβ fibril formation: insights from simulations of the monomers and dimers of Alzheimers peptides Aβ40 and Aβ42[J]. Current Alzheimer Research, 2008, 5(3): 244-250.
[1] 孙立梅,崔洁,高国强,卢建平,岑瑗瑗,刘超,穆晓滨. 胜坨油田回注水系统金属腐蚀机理研究[J]. 山东大学学报(工学版), 2016, 46(1): 86-92.
[2] 周美娟1,田春华1,王素娜1,陈效华2,刘继锋1,张翀1*. β-环糊精与白藜芦醇包合作用的理论研究[J]. 山东大学学报(工学版), 2011, 41(6): 103-108.
[3] 杨国辉1,孙晓瑜1,2,椿范立1. 应用沸石胶囊催化剂制备生物汽油(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 92-97.
[4] 蔡传兵1, 王艳芳1, 戴剑青1, 桑 园1,王晓祺1, 刘志勇1,
ZENG Rong2, GUO Zaiping2, 胡林华3, 孔凡太3, 戴松元3
.

纳米TiO2染料敏化太阳电池的电极修饰和光电复合研究(英文)

[J]. 山东大学学报(工学版), 2009, 39(2): 87-91.
[5] 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!