山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 134-138.doi: 10.6040/j.issn.1672-3961.0.2018.018
• • 上一篇
赵伟,艾洪奇*
ZHAO Wei, AI Hongqi*
摘要: 为了从原子层面上理解pH对Aβ42小纤维结构的影响,采用分子动力学模拟方法,通过分析二级结构,每条链的β-sheet含量以及扭转角,研究pH 4.0~7.5范围内Aβ42三聚体和五聚体的结构以及性质变化。研究结果表明,在pH 4.0~7.5范围内,pH对三聚体和五聚体的二级结构没有明显的影响,但是对小纤维每条链的β-sheet的含量有影响;扭转角以及小纤维的生长都是由纤维的奇数端引发,回应了关于纤维生长机制的意见分歧。
中图分类号:
[1] PRINCE M, BRYCE R, ALBANESE E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers & Dementia, 2013, 9(1):63-75. [2] 陈庆华,张凤强,李立新, 等. 阿尔茨海默病发病机制和诊断技术研究进展[J]. 中华老年心脑血管病杂志, 2018, 20(1): 108-110. CHEN Qinghua, ZHANG Fengqiang, LI Lixin, et al. Advances in the pathogenesis and diagnostic techniques of Alzheimers disease[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2018, 20(1):108-110. [3] 运会喜. 阿尔茨海默病治疗药物研究进展[J]. 中国老年学杂志, 2017, 37(24): 6269-6272. YUN Huixi. Progress in the treatment of drugs for Alzheimers Disease[J]. Chinese Journal of Gerontology, 2017, 37(24):6269-6272. [4] CACCAMO A, ODDO S, SUGARMAN M C, et al. Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders[J]. Neurobiol of Aging, 2005, 26(5): 645-654. [5] HARDY J, SELKOE D J. The Amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356. [6] MASMAN M F, EISEL U L M, CSIZMADIA I G, et al. In silico study of full-length Amyloid β1-42 tri-and penta-oligomers in solution[J]. The Journal of Physical Chemistry B, 2009, 113(34): 11710-11719. [7] NGO S T, HUNG H M, TRUONG D T, et al. Replica exchange molecular dynamics study of the truncated amyloid beta(11-40)trimer in solution[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 14876-14887. [8] SU Y, CHANG P T. Acidic pH promotes the formation of toxic fibrils from beta-amyloid peptide[J]. Brain Research, 2001, 893(1-2): 287-291. [9] YUN S, URBANC B, CRUZ L, et al. Role of electrostatic interactions in Amyloid β-protein(Aβ)oligomer formation: a discrete molecular dynamics study[J]. Biophysical, 2007, 92(11): 4064-4077. [10] TIPPING K W, KARAMANOS T K, JAKHRIA T, et al. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5691-5696. [11] SHAMMAS S L, KNOWLES T P J, BALDWIN A J, et al. Perturbation of the stability of Amyloid fibrils through alteration of electrostatic interactions[J]. Biophysical Journal, 2011, 100(11): 2783-2791. [12] MILLER Y, MA B, TSAI C J, et al. Hollow core of Alzheimers Aβ42 Amyloid observed by cryoEM is relevant at physiological pH[J]. Proceedings of the National Academy of Sciences, 2010, 107(32): 14128-14133. [13] GAL BITAN M D K, ALEKSEY LOMAKIN, SABRINA S V, et al. Amyloid β-protein(Aβ)assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. Proceedings of the National Academy of Sciences, 2003, 100(1): 330-335. [14] KLYUBIN I, WALSH D M, LEMERE C A, et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo[J]. Nature Medicine, 2005, 11(5): 556-561. [15] CLEARY J P, WALSH D M, HOFMEISTER J J, et al. Natural oligomers of the Amyloid-β protein specifically disrupt cognitive function[J]. Nature Neuroscience, 2005, 8(1): 79-84. [16] ZHAO J, WANG Q, LIANG G, et al. Molecular dynamics simulations of low-ordered Alzheimer β-Amyloid oligomers from dimer to hexamer on self-assembled monolayers[J]. Langmuir, 2011, 27(24): 14876-14887. [17] L HRS T, RITTER C, ADRIAN M, et al. 3D structure of Alzheimers Amyloid-β(1—42)fibrils[J]. Proceedings of the National Academy of Sciences, 2005, 102(48): 17342-17347. [18] PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. Journal of Computational Chemistry, 2004, 25(13): 1605-1612. [19] ANANDAKRISHNAN R, AGUILAR B, ONUFRIEV A V. H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations[J]. Nucleic Acids Research, 2012, 40(W1): W537-W541. [20] DAVID V D S, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. [21] HORNAK V, ABEL R, OKUR A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters[J]. Proteins, 2006, 65(3): 712-725. [22] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N(·overs)log(N)method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092. [23] UVERSKY V N, GILLESPIE J R, FINK A L. Why are "natively unfolded" proteins unstructured under physiologic conditions?[J]. Proteins, 2000, 41(3): 415-427. [24] SCHWEIKER K L, ZARRINEAFSAR A, DAVIDSON A R, et al. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions[J]. Protein Science, 2007, 16(12): 2694-2702. [25] TREVINO S R, SCHAEFER S, SCHOLTZ J M, et al. Increasing protein conformational stability by optimizing β-turn sequence[J]. Journal of Molecular Biology, 2007, 373(1): 211-218. [26] GURRY T, STULTZ C M. Mechanism of Amyloid-β fibril elongation[J]. Biochemistry Journal, 2014, 53(44): 6981-6991. [27] PAPARCONE R, BUEHLER M J. Microscale structural model of Alzheimer Aβ(1—40)amyloid fibril[J]. Applied Physics Letters, 2009, 94(24): 243904-243904-3. [28] HAN W, SCHULTEN K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations[J]. Journal of the American Chemical Society, 2014, 136(35): 12450-12460. [29] DONG M, PAUL T J, HOFFMANN Z, et al. Structural and material properties of Amyloid Aβ40/42 fibrils[J]. ChemPhysChem, 2016, 17(16):2558-2566. [30] ADRIEN M, XIAO D, NORMAND M, et al. Role of the region 23-28 in Aβ fibril formation: insights from simulations of the monomers and dimers of Alzheimers peptides Aβ40 and Aβ42[J]. Current Alzheimer Research, 2008, 5(3): 244-250. |
[1] | 孙立梅,崔洁,高国强,卢建平,岑瑗瑗,刘超,穆晓滨. 胜坨油田回注水系统金属腐蚀机理研究[J]. 山东大学学报(工学版), 2016, 46(1): 86-92. |
[2] | 周美娟1,田春华1,王素娜1,陈效华2,刘继锋1,张翀1*. β-环糊精与白藜芦醇包合作用的理论研究[J]. 山东大学学报(工学版), 2011, 41(6): 103-108. |
[3] | 杨国辉1,孙晓瑜1,2,椿范立1. 应用沸石胶囊催化剂制备生物汽油(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 92-97. |
[4] | 蔡传兵1, 王艳芳1, 戴剑青1, 桑 园1,王晓祺1, 刘志勇1, ZENG Rong2, GUO Zaiping2, 胡林华3, 孔凡太3, 戴松元3. 纳米TiO2染料敏化太阳电池的电极修饰和光电复合研究(英文) [J]. 山东大学学报(工学版), 2009, 39(2): 87-91. |
[5] | 王丽娟, 石静, 赵方剑. 气液界面上磺基甜菜碱两性表面活性剂分子动力学模拟[J]. 山东大学学报(工学版), 2014, 44(6): 83-89. |
|