山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (2): 11-22.doi: 10.6040/j.issn.1672-3961.0.2022.161
黄华娟1,程前2,韦修喜1*,于楚楚2
HUANG Huajuan1, CHENG Qian2, WEI Xiuxi1*, YU Chuchu2
摘要: 针对标准乌鸦搜索算法存在收敛速度慢、寻优精度低、位置更新具有盲目性的不足,提出一种融合Jaya高斯变异的自适应乌鸦搜索算法(adaptive crow search algorithm with Jaya algorithm and Gaussian mutation, GMJCSA)。通过高斯变异优化全局最优个体和自适应步长的合理变化,提高算法的收敛能力和寻优精度。在引导者发现自己被跟随的情况下引入Jaya算法,克服位置更新具有盲目性的不足。将GMJCSA用于16个基准函数优化和减速器设计问题,与其他智能算法进行试验对比,GMJCSA能取得更好的解。试验结果表明,GMJCSA对于函数优化和减速器设计问题能够较好地寻优求解,总体性能良好。
中图分类号:
[1] | ASKARZADEH A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm[J]. Computers and Structures, 2016, 169:1-12. |
[2] | SURENDAR P. Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm[J]. Journal of Computational Science, 2021, 53: 101374. |
[3] | UPADHYAY P, CHHABRA J K. Kapur's entropy based optimal multilevel image segmentation using crow search algorithm[J]. Applied Soft Computing, 2020, 97: 105522. |
[4] | RAMACHANDRAN M, MIRJALILI S, RAMALINGAM M M, et al. A ranking-based fuzzy adaptive hybrid crow search algorithm for combined heat and power economic dispatch[J]. Expert Systems with Applications, 2022, 197: 116625. |
[5] | ABDULMUNIM A N T, YAHYA A Z, OMAR S Q. Feature selection based on a crow search algorithm for big data classification[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 212:104288. |
[6] | SAMIEIYAN B, MOHAMMADINASAB P, MOLLAEI M A, et al. Novel optimized crow search algorithm for feature selection[J]. Expert Systems with Applications, 2022, 204:117486. |
[7] | MAKHDOOMI S, ASKARZADEH A. Optimizing operation of a photovoltaic/diesel generator hybrid energy system with pumped hydro storage by a modified crow search algorithm[J]. Journal of Energy Storage, 2020, 27:101040. |
[8] | BANADKOOKI F B, ADAMOWSKI J, SINGH V P, et al. Crow algorithm for irrigation management: a case study[J]. Water Resources Management, 2020, 34(3):1021-1045. |
[9] | YOUSIF M, SALIM A, JUMMAR W K. A robotic path planning by using crow swarm optimizationalgorithm[J]. International Journal of Mathematical Sciences and Computing(IJMSC), 2021, 7(1):20-25. |
[10] | 肖子雅, 刘升, 韩斐斐,等.正弦余弦指引的乌鸦搜索算法研究[J].计算机工程与应用,2019,55(21):52-59. XIAO Ziya, LIU Sheng, HAN Feifei, et al. Crow search algorithm based on directing of sine cosine algorithm[J]. Computer Engineering and Applications, 2019, 55(21):52-59. |
[11] | MOHAMMADI F, ABDI H. A modified crow search algorithm(MCSA)for solving economic load dispatch problem[J]. Applied Soft Computing Journal, 2018, 71:51-65. |
[12] | RIZK M R, HASSANIEN A E, BHATTACHA-RYYA S. Chaotic crow search algorithm for fractional optimization problems[J]. Applied Soft Computing, 2018, 71:1161-1175. |
[13] | 刘雪静,贺毅朝,吴聪聪,等.求解0-1背包问题的混沌二进制乌鸦算法[J].计算机工程与应用,2018,54(10):173-179. LIU Xuejing, HE Yichao, WU Congcong, et al. Chaotic binary crow search algorithm for 0-1 knapsack problem[J]. Computer Engineering and Applications, 2018, 54(10): 173-179. |
[14] | 唐菁敏,郑锦文,曲文博.基于改进自适应乌鸦搜索算法的无源定位[J].重庆邮电大学学报(自然科学版),2021,33(3):372-377. TANG Jingmin, ZHENG Jinwen, QU Wenbo. Improved adaptive crow search algorithm based on passive location[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(3):372-377. |
[15] | HAN X, XU Q, YUE L, et al. An improved crow search algorithm based on spiral search mechanism for solving numerical and engineering optimization problems[J]. IEEE Access, 2020, 8: 92363-92382. |
[16] | RAO R. Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016, 7(1): 19-34. |
[17] | KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN'95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995, 4: 1942-1948. |
[18] | MIRJALILI S, LEWIS A. Thewhale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67. |
[19] | 辛梓芸,张达敏,陈忠云,等.多段扰动的共享型乌鸦算法[J].计算机工程与应用,2020, 56(2):55-61. XIN Ziyun, ZHANG Damin, CHEN Zhongyun, et al. Shared crow algorithm using multi-segment perturbation[J]. Computer Engineering and Applications, 2020, 56(2):55-61. |
[20] | DERRAC J, GARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18. |
[21] | WILCOXON F. Probability tables for individual comparisons by ranking methods[J]. Biometrics, 1947, 3(3): 119-122. |
[22] | MENG X, LIU Y, GAO X, et al. A new bio-inspired algorithm: chicken swarm optimization[C] //International Conference in Swarm Intelligence. Cham, Switzerland: Springer, 2014: 86-94. |
[23] | REYNOLDS R, ALI M. Embedding a social fabric component into cultural algorithms toolkit for an enhanced knowledge-driven engineering optimization[J]. International Journal of Intelligent Computing and Cybernetics, 2008, 1(4): 563-597. |
[24] | GANDOMI A H, YANG X S, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(1): 17-35. |
[25] | MEAURA-MONTES E, COELLO C A, LANDA-BECERRA R. Engineering optimization using simple evolutionary algorithm[C] // Proceedings 15th IEEE International Conference on Tools with Artificial Intelligence. Sacramento, CA, USA: IEEE, 2003: 149-156. |
[1] | 王启明, 李战国, 樊爱宛. 基于博弈论的量子蚁群算法[J]. 山东大学学报(工学版), 2015, 45(2): 33-36. |
[2] | 张潇丹,赵力,邹采荣*. 一种改进的混合蛙跳算法求解有约束优化问题[J]. 山东大学学报(工学版), 2013, 43(1): 1-8. |
|