山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (4): 70-77.doi: 10.6040/j.issn.1672-3961.0.2018.533
Jie LIU1(),Zhechao WANG2,*(),Yupeng ZHANG2,Huayang SUN3
摘要:
通过试验和理论分析,研究不同几何参数的岩石粗糙裂隙渗流的非达西系数β、临界雷诺数Rec、非达西效应因子E等变化特性。研制裂隙渗流试验仪器,制作9个不同开度和裂隙粗糙度(joint roughness coefficient, JRC)的单裂隙模型,开展大范围雷诺数Re条件下粗糙裂隙渗流试验。根据渗流试验结果,得到了不同粗糙度(JRC=2~20)单裂隙的渗流特性,显示出粗糙度对裂隙的非线性渗流特性产生显著的影响。结合Forchheimer方程,从理论参数方面,对粗糙度的影响进行量化。研究显示:裂隙粗糙度越大,则越容易引起裂隙渗流的非线性,临界雷诺数越小,非线性作用越强。
中图分类号:
1 | 刘日成, 蒋宇静, 李博, 等. 岩体裂隙网络非线性渗流特性研究[J]. 岩土力学, 2016, 37 (10): 2817- 2824. |
LIU Richeng , JIANG Yujing , LI Bo , et al. Nonlinear seepage behaviors of fluid in fracture networks[J]. Rock and Soil Mechanics, 2016, 37 (10): 2817- 2824. | |
2 | BERKOWITZ B . Characterizing flow and transport in fractured geological media: a review[J]. Advances in Water Resources, 2002, 25 (8): 861- 884. |
3 | ZIMMERMAN R W , BODVARSSON G S . Hydraulic conductivity of rock fractures[J]. Transport in Porous Media, 1996, 23 (1): 1- 30. |
4 |
SKJETNE E , HANSEN A , GUDMUNDSSON J S . High-velocity flow in a rough fracture[J]. Journal of Fluid Mechanics, 1999, 383, 1- 28.
doi: 10.1017/S0022112098002444 |
5 |
JAVADI M , SHARIFZADEH M , SHAHRIAR K , et al. Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes[J]. Water Resources Research, 2014, 50 (2): 1789- 1804.
doi: 10.1002/2013WR014610 |
6 |
蒋宇静, 李博, 王刚, 等. 岩石裂隙渗流特性试验研究的新进展[J]. 岩石力学与工程学报, 2008, 27 (12): 2377- 2386.
doi: 10.3321/j.issn:1000-6915.2008.12.001 |
JIANG Yujing , LI Bo , WANG Gang , et al. New advances in experimental study on seepage characteristics of rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (12): 2377- 2386.
doi: 10.3321/j.issn:1000-6915.2008.12.001 |
|
7 | LIU R C , YU L Y , JIANG Y J . Quantitative estimates of normalized transmissivity and the onset of nonlinear fluid flow through rough rock fractures[J]. Rock Mechanics and Rock Engineering, 2016, 50 (4): 1- 9. |
8 | 熊峰, 孙昊, 姜清辉, 等. 粗糙岩石裂隙低速非线性渗流模型及试验验证[J]. 岩土力学, 2018, 39 (9): 3294- 3302. |
XIONG Feng , SUN Hao , JIANG Qinghui , et al. Theoretical model and experimental verification on non-linear flow at low velocity through rough-walled rock fracture[J]. Rock and Soil Mechanics, 2018, 39 (9): 3294- 3302. | |
9 | YU L Y , LIU R C , JIANG Y J . A review of critical conditions for the onset of nonlinear fluid flow in rock fractures[J]. Geofluids, 2017, 1- 17. |
10 |
LIU R C , JING H J , HE L X , et al. An experimental study of the effect of fillings on hydraulic properties of single fractures[J]. Environmental Earth Sciences, 2017, 76, 684.
doi: 10.1007/s12665-017-7024-8 |
11 | BRUSH D J , THOMSON N R . Fluid flow in synthetic rough-walled fractures: navier-stokes, Stokes, and local cubic law simulations[J]. Water Resources Research, 2003, 39 (4): 1085. |
12 | ZIMMERMAN R W , AL-YAARUBI A , PAIN C C , et al. Nonlinear regimes of fluid flow in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41 (3): 163- 169. |
13 | KONZUK J S , KUEPER B H . Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture[J]. Water Resources Research, 2004, 40 (2): W02402. |
14 | QIAN J Z , ZHAN H B , CHEN Z , et al. Experimental study of solute transport under non-Darcian flow in a single fracture[J]. Journal of Hydrology, 2011, 399 (3): 246- 254. |
15 |
CHEN Y F , HU S H , HU R , et al. Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash's law-based empirical model[J]. Water Resources Research, 2015, 51 (4): 2096- 2118.
doi: 10.1002/2014WR016458 |
16 | TZELEPIS V , MOUTSOPOULOS K N , PAPASPYROS J N E , et al. Experimental investigation of flow behavior in smooth and rough artificial fractures[J]. Journal of Hydrology, 2015, 521 (2): 108- 118. |
17 |
ZHOU J Q , HU S H , CHEN Y F , et al. The friction factor in the Forchheimer equation for rock fractures[J]. Rock Mechanics and Rock Engineering, 2016, 49 (8): 3055- 3068.
doi: 10.1007/s00603-016-0960-x |
18 |
QIAN X , XIA C C , GUI Y . Quantitative estimates of non-Darcy groundwater flow properties and normalized hydraulic aperture through discrete open rough-walled joints[J]. International Journal of Geomechanic, 2018, 18 (9): 04018099.
doi: 10.1061/(ASCE)GM.1943-5622.0001228 |
19 | 王媛, 顾智刚, 倪小东, 等. 光滑裂隙高流速非达西渗流运动规律的试验研究[J]. 岩石力学与工程学报, 2010, 29 (7): 1404- 1408. |
WANG Yuan , GU Zhigang , NI Xiaodong , et al. Experimental study of non-Darcy water flow through a single smooth fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (7): 1404- 1408. | |
20 | 王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38 (7): 1262. |
WANG Zhiliang , SHEN Linfang , XU Zemin , et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (7): 1262. | |
21 |
BARTON N , CHOUBEY V . The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10, 1- 54.
doi: 10.1007/BF01261801 |
22 | IWAI K. Fundamental studies of fluid flow through a single fracture[D]. California, USA: California University, 1976. |
23 | FORCHHEIMER P H . Wasserbewegung durch boden[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1901, 45, 1782- 1788. |
24 | BEAR J . Dynamics of Fluids in Porous Media[M]. New York. USA: American Elsevier, 1972. |
25 |
ZENG Z , GRIGG R A . Criterion for non-Darcy flow in porous media[J]. Transport in Porous Media, 2006, 63 (1): 57- 59.
doi: 10.1007/s11242-005-2720-3 |
26 |
CHEN Y F , ZHOU J Q , HU S H , et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529, 993- 1006.
doi: 10.1016/j.jhydrol.2015.09.021 |
27 |
许凯, 雷学文, 孟庆山, 等. 非达西渗流惯性系数研究[J]. 岩石力学与工程学报, 2012, 31 (1): 164- 170.
doi: 10.3969/j.issn.1000-6915.2012.01.019 |
XU Kai , LEI Xuewen , MENG Qingshan , et al. Study of inertial coefficient of non-Darcy seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (1): 164- 170.
doi: 10.3969/j.issn.1000-6915.2012.01.019 |
|
28 | 王者超, 张振杰, 李术才, 等. 基于离散裂隙网络法的地下石油洞库洞室间水封性评价[J]. 山东大学学报(工学版), 2016, 46 (2): 94- 100. |
WANG Zhechao , ZHANG Zhenjie , LI Shucai , et al. Assessment of intercavern containment property for underground oil storage caverns using discrete fracture networks[J]. Journal of Shandong University (Engineering Science), 2016, 46 (2): 94- 100. | |
29 |
ZHANG Z , NEMCIK J . Friction factor of water flow through rough rock fractures[J]. Rock Mechanics and Rock Engineering, 2013, 46 (5): 1125- 1134.
doi: 10.1007/s00603-012-0328-9 |
[1] | 刘子豪,张建成,张波,范志鑫,李成新,杨惠茗,李景龙. 含水率对土钉锚固土体抗剪性能影响[J]. 山东大学学报 (工学版), 2023, 53(3): 14-22. |
[2] | 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30. |
[3] | 刘健,杨浩,崔晓琳. 围压作用下土-结构接触渗流特性[J]. 山东大学学报 (工学版), 2023, 53(3): 60-68. |
[4] | 肖文斌,谢印标,郑扬,武科,陈榕,李秋雷,程睿哲. 活动断层下城市地铁隧道变形破坏与损伤[J]. 山东大学学报 (工学版), 2023, 53(3): 1-13. |
[5] | 柴少波,史杰辉,阿比尔的,刘钦,宋浪. P波入射含顺层结构面岩质边坡引起的振动[J]. 山东大学学报 (工学版), 2023, 53(3): 31-40. |
[6] | 李连祥,李红波,韩刚,郭龙德,赵仕磊. 济南非饱和土基坑支护设计[J]. 山东大学学报 (工学版), 2023, 53(3): 41-49. |
[7] | 陈榕,魏彤,郝冬雪,武科,郭瑞峰. 重金属Cu(Ⅱ)在球黏土中的吸附特性[J]. 山东大学学报 (工学版), 2023, 53(1): 60-67. |
[8] | 李连祥,王雷,赵永新,季相凯. 考虑支护结构作用的地下管廊真实受力模型[J]. 山东大学学报 (工学版), 2021, 51(1): 60-68. |
[9] | 孙连勇,时刚,崔新壮,周明祥,王永军,纪方,闫小东. 饱和地基中单排孔近场隔振的现场试验与数值分析[J]. 山东大学学报 (工学版), 2020, 50(3): 88-97. |
[10] | 李连祥,白璐,陈天宇,季相凯. 复合地基与临近基坑支护结构之间距离影响规律[J]. 山东大学学报 (工学版), 2019, 49(3): 63-72, 79. |
[11] | 张建明, 刘泉声, 唐志成, 占婷, 蒋亚龙. 考虑剪切变形历史影响的节理峰值剪切强度准则[J]. 山东大学学报(工学版), 0, (): 77-81. |
[12] | 王者超,王心语,韦昌富,李崴,段广平,李帅,张春雨. 水化学条件对高岭土压缩性的影响机理[J]. 山东大学学报 (工学版), 2018, 48(5): 109-117. |
[13] | 白现军,王太兴,卫鑫,赵武胜. 近断层速度脉冲对隧洞工程动力响应的影响规律[J]. 山东大学学报(工学版), 2017, 47(2): 14-19. |
[14] | 陈恩瑜,邓思文,陈方明,马池帅. 一种基于TBM掘进参数的现场岩石强度快速估算模型[J]. 山东大学学报(工学版), 2017, 47(2): 7-13. |
[15] | 刘金,李勤昌,马秀媛. 有限元强度折减法在边坡稳定分析中的应用[J]. 山东大学学报(工学版), 2016, 46(4): 83-88. |
|