山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (3): 14-22.doi: 10.6040/j.issn.1672-3961.0.2021.538
刘子豪1,2,张建成1,张波1*,范志鑫1,李成新1,杨惠茗1,李景龙1
LIU Zihao1,2, ZHANG Jiancheng1, ZHANG Bo1*, FAN Zhixin1, LI Chengxin1, YANG Huiming1, LI Jinglong1
摘要: 选取含水率为10%~30%的土钉锚固土,研究含水率对锚固土体抗剪性能的影响规律。研发一种室内制作锚固土试件的装置,对不同含水率的土钉锚固土试件进行直剪试验,分析含水率对土钉锚固土体抗剪性能的影响效果。利用电子显微镜观察不同含水率时土颗粒的排列结构,定性解释含水率对锚固土抗剪性能的影响机理。结果表明,锚固土的抗剪强度包含土体本身的抗剪强度和土钉对土体的加固作用。含水率对土钉的锚固效果有明显影响,为15%~22%时土钉能发挥最优抗剪加固作用,土钉的锚固作用可以减缓水对土体抗剪性能的削弱,降低土体突然破坏的概率。含水率变化会改变压实土体的颗粒排列结构,影响土体的剪切过程,进而影响土钉的抗剪加固效果。得到不同锚固条件下以含水率为自变量的抗剪强度经验公式,为工程中计算和校核锚固土的抗剪强度提供了一定的理论依据。
中图分类号:
[1] | AZZAM W R, BASHA A. Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1104-1111. |
[2] | 黄琨,万军伟,陈刚,等. 非饱和土的抗剪强度与含水率关系的试验研究[J]. 岩土力学, 2012, 33(9): 2600-2604. HUANG Kun, WAN Junwei, CHEN Gang, et al. Testing study of relationship between moisture content and shear strength of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(9): 2600-2604. |
[3] | 边加敏,王保田. 含水量对非饱和土抗剪强度参数的影响研究[J]. 地下空间与工程学报, 2011, 7(1): 17-21. BIAN Jiamin, WANG Baotian. Research on influence of water contents on the shear strength behavior of unsaturated soils[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(1): 17-21. |
[4] | 贾亮,朱彦鹏,朱鋆川. 兰州马兰、离石压实黄土抗剪强度影响因素探讨[J]. 岩土工程学报, 2014, 36(增刊2): 120-124. JIA Liang, ZHU Yanpeng, ZHU Yunchuan. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(Suppl.2): 120-124. |
[5] | 王林浩,白晓红,冯俊琴. 压实黄土状填土抗剪强度指标的影响因素探讨[J]. 岩土工程学报, 2010, 32(增刊2): 132-135. WANG linhao, BAI Xiaohong, FENG Junqin. Discussion on shearing strength influencing factors of compacted loess-like backfill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Suppl.2): 132-135. |
[6] | ZHOU Y D, CHEUK C Y, THAM L G. An embedded bond-slip model for finite element modelling of soil-nail interaction[J]. Computers and Geotechnics, 2009, 36(6): 1090-1097. |
[7] | KIM Y, LEE S, JEONG S, et al. The effect of pressure-grouted soil nails on the stability of weathered soil slopes[J]. Computers and Geotechnics, 2013, 49: 253-263. |
[8] | WU J J, CHENG Q G, LIANG X, et al. Stability analysis of a high loess slope reinforced by the combination system of soil nails and stabilization piles[J]. Frontiers of Structural and Civil Engineering, 2014, 8(3): 252-259. |
[9] | 张玉成,杨光华,吴舒界,等. 土钉支护结构变形与稳定性关系探讨[J]. 岩土力学, 2014, 35(1): 238-247. ZHANG Yucheng, YANG Guanghua, WU Shujie, et al. Discussion on relationship between deformation and stability of soil nailing structure[J]. Rock and Soil Mechanics, 2014, 35(1): 238-247. |
[10] | WANG H, CHENG J H, GUO Y C, et al. Failure mechanism of soil nail-prestressed anchor composite retaining structure[J]. Geotechnical and Geological Engineering, 2016, 34(6): 1889-1898. |
[11] | 郭红仙,周鼎. 软土中基坑土钉支护稳定性问题探讨[J]. 岩土力学, 2018, 39(增刊2): 398-404. GUO Hongxian, ZHOU Ding. Discussion on stability of soil nailing in excavation in soft clay[J]. Rock and Soil Mechanics, 2018, 39(Suppl.2): 398-404. |
[12] | 张媛,董建华,董旭光,等. 季节性冻土区土钉边坡支护结构冻融反应分析[J]. 岩土力学, 2017, 38(2): 574-582. ZHANG Yuan, DONG Jianhua, DONG Xuguang, et al. Analysis of freezing and thawing of slope improved by soil nailing structure in seasonal frozen soil region[J]. Rock and Soil Mechanics, 2017, 38(2): 574-582. |
[13] | 王玉峰, 程谦恭, 黄英儒. 不同支护模式下黄土高边坡开挖变形离心模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 1032-1046. WANG Yufeng, CHENG Qiangong, HUANG Yingru. Centrifuge tests on excavation of high loess slope with different reinforcement modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 1032-1046. |
[14] | LIN P Y, LIU J Y. Analysis of resistance factors for LFRD of soil nail walls against external stability failures[J]. Acta Geotechnica, 2017, 12(1): 157-169. |
[15] | OLIAEI M, NOROUZI B, BINESH S M. Evaluation of soil-nail pullout resistance using mesh-free method[J]. Computers and Geotechnics, 2019, 116: 103179. |
[16] | 张波,刘子豪,杨学英,等. 一种用于重塑加锚土试件的直剪试验装置及方法: CN110823718B[P]. 2020-12-18. |
[17] | 中华人民共和国水利部. 土工试验规程: SL 237—1999[S]. 北京:中国水利水电出版社, 1999. |
[18] | 路德春, 杜修力, 许成顺. 有效应力原理解析[J]. 岩土工程学报, 2013, 35(增刊1): 146-151. LU Dechun, DU Xiuli, XU Chengshun. Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl.1): 146-151. |
[19] | 吴梦喜,杨家修,湛正刚. 边坡稳定分析的虚功率法[J]. 力学学报, 2020, 52(3): 663-672. WU Mengxi, YANG Jiaxiu, ZHAN Zhenggang. A virtual power slope stability analysis method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 663-672. |
[1] | 张宏博,刘明朋,孙玉海,杨强,宋修广,李晓亮. 粉土基泡沫轻质土三轴力学特性[J]. 山东大学学报 (工学版), 2022, 52(1): 39-46. |
[2] | 赵之仲,柳泓哲,刘桂强,杨振宇. ATB柔性基层与半刚性基层的层间抗剪规律[J]. 山东大学学报 (工学版), 2019, 49(3): 57-62. |
[3] | 李崴,王者超,李术才,丁万涛,王琦,宗智,刘克奇. 哈尔滨地铁粉质黏土力学性质与超前支护方式[J]. 山东大学学报(工学版), 2018, 48(2): 61-71. |
[4] | 祝学勇,胡文凯,邢庆涛,李培健,商庆森,满铁强. 黄河冲淤积非饱和高塑性黏土的抗剪性状[J]. 山东大学学报(工学版), 2016, 46(1): 62-69. |
[5] | 杨俊, 杨志. 冻融循环条件下水泥稳定风化集料抗剪强度试验研究[J]. 山东大学学报(工学版), 2014, 44(5): 42-48. |
[6] | 付昌, 蒋明镜, 申志福, 王华宁, 吴晓峰. 非饱和土动剪模量与阻尼比影响因素试验[J]. 山东大学学报(工学版), 2014, 44(5): 35-41. |
[7] | 赵吉坤1,2,陈佳虹1. 降雨条件下土体坡度及含水率对边坡稳定性影响的试验研究[J]. 山东大学学报(工学版), 2013, 43(2): 76-83. |
|