您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (1): 60-67.doi: 10.6040/j.issn.1672-3961.0.2022.176

• 土木工程 • 上一篇    下一篇

重金属Cu(Ⅱ)在球黏土中的吸附特性

陈榕1,2(),魏彤1,2,郝冬雪1,2,*(),武科3,郭瑞峰4   

  1. 1. 东北电力大学岩土工程研究所, 吉林 吉林 132012
    2. 东北电力大学吉林省电力基础设施安全评估与灾害防治重点实验室, 吉林 吉林 132012
    3. 山东大学土木工程学院, 山东 济南 250100
    4. 吉林市宝丰球黏土有限公司, 吉林 吉林 132207
  • 收稿日期:2022-05-08 出版日期:2023-02-20 发布日期:2023-02-13
  • 通讯作者: 郝冬雪 E-mail:lg1316cih@126.com;haodongxue2005@126.com
  • 作者简介:陈榕(1979—),男,辽宁沈阳人,教授,博士,主要研究方向为环境土工和不良土体加固。E-mail: lg1316cih@126.com
  • 基金资助:
    国家自然科学基金资助项目(52078108);吉林省科技厅中青年科技创新领军人才及团队资助项目(20210509058RQ);吉林省教育厅科学研究资助项目(JJKH20210103KJ)

The adsorption characteristics of Cu(Ⅱ) on ball clay

Rong CHEN1,2(),Tong WEI1,2,Dongxue HAO1,2,*(),Ke WU3,Ruifeng GUO4   

  1. 1. Institute of Geotechnical Engineering, Northeast Electric Power University, Jilin 132012, Jilin, China
    2. Key Lab of Electric Power Infrastructure Safety Assessment and Disaster Prevention of Jilin Province, Northeast Electric Power University, Jilin 132012, Jilin, China
    3. School of Civil Engineering, Shandong University, Jinan 250100, Shandong, China
    4. Jilin Baofeng Ball Clay Co., Ltd., Jilin 132207, Jilin, China
  • Received:2022-05-08 Online:2023-02-20 Published:2023-02-13
  • Contact: Dongxue HAO E-mail:lg1316cih@126.com;haodongxue2005@126.com

摘要:

通过批式吸附试验, 考察球黏土对Cu(Ⅱ)的吸附效果, 重点分析吸附时间、吸附剂用量、pH值以及初始质量浓度的影响。结果表明, Cu(Ⅱ)在球黏土上的吸附是一个先快速而后缓慢的过程, 在60 min基本达到吸附平衡, 且吸附量和吸附率随球黏土用量和Cu(Ⅱ)初始质量浓度的升高而提高。pH值对球黏土的吸附量有较大的影响, 当pH值为6时, 球黏土的吸附量可达97.93 mg/g。球黏土对Cu(Ⅱ)的吸附符合Langmiur等温吸附模型, 拟合得到的最大吸附量为202.383 mg/g, 准二阶动力学模型更适合描述球黏土对Cu(Ⅱ)的吸附过程, 说明控制吸附速率的主要是化学吸附。与其他常见的黏土吸附剂材料相比, 球黏土对Cu(Ⅱ)具有良好的吸附性能, 可以作为天然矿物吸附剂来处理含Cu(Ⅱ)废水。

关键词: 球黏土, Cu(Ⅱ), 吸附, 等温线, 动力学

Abstract:

In order to study the adsorption characteristics of ball clay, the effect of adsorption time, ball clay dosage, pH values and initial concentration of Cu(Ⅱ) were examined by the batch experiments. The results suggested that the adsorption of Cu(Ⅱ) on ball clay was a fast and then slow process. Which almost achieved adsorption equilibrium after 60 minutes and the adsorption capacity and adsorption rate were increased with the increase of ball clay dosage and initial concentration of Cu(Ⅱ). The pH value had a great impact on the adsorption of ball clay and when the pH value was 6, the adsorption capacity was obtained over 97.93 mg/g. The adsorption of Cu(Ⅱ) on the ball clay followed the Langmiur isotherm model, and the maximum adsorption capacity obtained was 202.383 mg/g. The pseudo-second-order kinetics model was more suitable to describe the adsorption process of Cu(Ⅱ), which indicated that the adsorption rate was controlled by chemisorption. Compared with other pure clay adsorbent materials, the ball clay had a high ability to adsorb copper ions and could be used as a natural mineral adsorbent to treat industrial wastewater containing copper ions.

Key words: ball clay, Cu (Ⅱ), adsorption, isotherm, kinetics

中图分类号: 

  • TU432

图1

球黏土样"

图2

球黏土的XRD分析"

表1

球黏土的物理性质指标"

液限/% 塑限/% 塑性指数 密度/(g·cm-3) 最优含水率/% 最大干密度/(g·cm-3)
40 21 19 2.7 17.7 1.73

表2

Cu(Ⅱ)的吸附试验方案"

编号 吸附时间/min 球黏土用量/g 溶液pH值 Cu(Ⅱ)质量浓度/(mg·L-1)
A1 10~150 0.10 6 100
A2 60 0.04~0.50 6 100
A3 60 0.10 2~6 100
A4 60 0.10 6 10~500

图3

吸附时间对吸附量的影响"

图4

吸附剂用量对吸附量的影响"

图5

pH值对吸附量的影响"

图6

初始质量浓度对吸附量的影响"

图7

球黏土对Cu(Ⅱ)的吸附动力学拟合曲线"

表3

球黏土对Cu(Ⅱ)的吸附动力学拟合参数"

准一阶动力学模型 准二阶动力学模型 颗粒内扩散模型
qe/(mg·g-1) k1/min-1 R2 qe/(mg·g-1) k2/(g·mg-1·min-1) R2 C/(mg·g-1) kw/(mg·min1/2·g-1) R2
97.118 0.323 0.812 98.082 0.021 0.995 93.820 0.371 0.608

图8

球黏土对Cu(Ⅱ)的颗粒内扩散模型分段拟合曲线"

图9

球黏土对Cu(Ⅱ)的吸附等温线拟合曲线"

表4

球黏土对Cu(Ⅱ)的吸附等温线拟合参数"

Langmiur等温吸附模型 Freundlich等温吸附模型 D-R等温吸附模型
qm/(mg·g-1) kL/(L·mg-1) RL R2 n kF/(L·mg-1) R2 qm/(mg·g-1) k/(mol2·J-2) E/(KJ·mol-1) R2
202.383 0.007 94 0.024~0.550 0.982 2.210 10.292 0.917 150.677 0.000 564 29.775 0.967

表5

球黏土与其他吸附剂的Cu(Ⅱ)最大吸附量"

文献 最大吸附量/(mg·g-1) 吸附剂
[25] 30.00 钠基膨润土
[23] 31.80 蒙脱土
[6] 41.67 马来西亚高岭土
[26] 43.85 钙基膨润土
[27] 55.68 伊朗膨润土
[28] 65.00 碱性钙基膨润土
[29] 149.25 膨润土
本研究 202.383 球黏土
1 刘晓慧. 实施土壤保护构建土壤安全[N]. 中国矿业报, 2015-10-29(6).
LIU Xiaohui. Implement soil protection and build soil safety[N]. China Mining News, 2015-10-29(6).
2 CORUH S , GEYIKCI F . Adsorption of copper(Ⅱ) ions on montmorillonite and sepiolite clays: equilibrium and kinetic studies[J]. Desalination and Water Treatment, 2012, 45 (3): 351- 360.
3 刘海龙, 郭存彪, 何璐红, 等. 废水中重金属离子吸附材料的研究进展[J]. 化工技术与开发, 2021, 50 (3): 51- 54.
doi: 10.3969/j.issn.1671-9905.2021.03.013
LIU Hailong , GUO Cunbiao , HE Luhong , et al. Research progress on adsorption materials of heavy metal ions in wastewater[J]. Technology & Development of Chemical Industry, 2021, 50 (3): 51- 54.
doi: 10.3969/j.issn.1671-9905.2021.03.013
4 ANNA B , KLEOPAS M , CONSTANTINE S , et al. Adsorption of Cd(Ⅱ), Cu(Ⅱ), Ni(Ⅱ) and Pb(Ⅱ) onto natural bentonite: study in mono-and multi-metal systems[J]. Environmental Earth Sciences, 2015, 73 (9): 5435- 5444.
doi: 10.1007/s12665-014-3798-0
5 袁建民. 粘土矿物对重金属离子的吸附能力研究[D]. 石家庄: 河北地质大学, 2018.
YUAN Jianmin. Adsorption ability of clay minerals to heavy metal ions[D]. Shijiazhuang: Hebei GEO University, 2018.
6 CHAI J , AU P , MUBARAK N , et al. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research, 2020, 27 (12): 13949- 13962.
doi: 10.1007/s11356-020-07755-y
7 FUTALAN C , YANG J , PHATAI P , et al. Fixed-bed adsorption of copper from aqueous media using chitosan-coated bentonite, chitosan-coated sand and chitosan-coated kaolinite[J]. Environmental Science and Pollution Research, 2020, 27, 24659- 24670.
doi: 10.1007/s11356-019-06083-0
8 郭瑞峰, 刘长龄. 吉林球黏土大口钦矿区的开发[J]. 非金属矿, 2007, (3): 47- 50.
doi: 10.3969/j.issn.1000-8098.2007.03.017
GUO Ruifeng , LIU Changling . Development of ball clay from Dakouqin Mining District of Jilin Province[J]. Non-Metallic Mines, 2007, (3): 47- 50.
doi: 10.3969/j.issn.1000-8098.2007.03.017
9 刘长龄, 李生才, 刘钦甫. 论我国球粘土[J]. 天津城市建设学院学报, 2003, (4): 256- 260.
doi: 10.3969/j.issn.1006-6853.2003.04.009
LIU Changling , LI Shengcai , LIU Qinfu . On ball clay in China[J]. Journal of Tianjin Institute of Urban Construction, 2003, (4): 256- 260.
doi: 10.3969/j.issn.1006-6853.2003.04.009
10 RAO R , KASHIFUDDIN M . Adsorption studies of Cd(Ⅱ) on ball clay: comparison with other natural clays[J]. Arabian Journal of Chemistry, 2012, 9 (2): 1233- 1421.
11 CHANTAWONG V , HARVEY N , BASHIKIN V . Comparison of heavy metal adsorptions by Thai kaolin and ball clay[J]. Water, Air, and Soil Pollution, 2003, 11 (4): 111- 125.
12 ZAVALA M , SANTANA H , CORDERO B . Removal of Cr(VI) from water by adsorption using low cost clay-perlite-iron membranes[J]. Journal of Water Process Engineering, 2020, 38 (7): 101672- 101682.
13 VIGLASOVA E , DANO M , GALAMBO M , et al. Investigation of Cu(Ⅱ) adsorption on Slovak bentonites and illite/smectite for agricultural applications[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314 (3): 2425- 2435.
doi: 10.1007/s10967-017-5610-6
14 LI Pam , BRUCE R , HOBDAY M . A pseudo first order rate model for the adsorption of an organic adsorbate in aqueous solution[J]. Journal of Chemical Technology and Biotechnology, 1999, 74 (1): 55- 59.
doi: 10.1002/(SICI)1097-4660(199901)74:1<55::AID-JCTB984>3.0.CO;2-D
15 HO Y , MCKAY G . Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34 (5): 451- 465.
doi: 10.1016/S0032-9592(98)00112-5
16 郝艳玲, 范福海. 坡缕石黏土吸附Cu2+的动力学[J]. 硅酸盐学报, 2010, 38 (11): 2138- 2142.
HAO Yanling , FAN Fuhai . Adsorption kinetic of copper from aqueous on palygorskite clay[J]. Journal of the Chinese Ceramic Society, 2010, 38 (11): 2138- 2142.
17 张宏, 张敬华. 生物吸附的热力学平衡模型和动力学模型综述[J]. 天中学刊, 2009, 24 (5): 19- 22.
doi: 10.3969/j.issn.1006-5261.2009.05.008
ZHANG Hong , ZHANG Jinghua . Review on thermodynamic equilibrium isotherm and kinetic model of biosorption[J]. Journal of Tianzhong, 2009, 24 (5): 19- 22.
doi: 10.3969/j.issn.1006-5261.2009.05.008
18 TUN H , CHEN C . Isosteric heat of adsorption from thermodynamic Langmuir isotherm[J]. Adsorption Journal of the International Adsorption Society, 2021, 27 (6): 979- 989.
doi: 10.1007/s10450-020-00296-3
19 YANG C . Statistical mechanical study on the Freundlich isotherm equation[J]. Journal of Colloid and Interface Science, 1998, 20 (8): 379- 387.
20 HUSTON N , YANG R . Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation[J]. Adsorption, 1997, 3 (3): 189- 195.
doi: 10.1007/BF01650130
21 敖翔. 颗粒型4A分子筛/凹凸棒土材料的制备及吸附去除水中Cd(Ⅱ)的研究[D]. 武汉: 武汉科技大学, 2017.
AO Xiang. Study on adsorption of aqueous Cd(Ⅱ) by agranular 4A molecular sieve/attapulgite composite[D]. Wuhan: Wuhan University of Science and Technol-ogy, 2017.
22 WU F , TSENG R , JUANG R . Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics[J]. Chemical Engineering Journal, 2009, 15 (3): 1- 8.
23 BHATTACHARYYA K , GUPTA S . Removal of Cu(Ⅱ) by natural and acid-activated clays: an insight of adsorption isotherm, kinetic and thermodynamics[J]. Desalination, 2011, 27 (2): 66- 75.
24 张林林. 黏土矿物对重金属Pb(Ⅱ)吸附特性研究[D]. 大连: 大连理工大学, 2012.
ZHANG Linlin. Adsorption behaviors of heavy mental Pb(Ⅱ) on clay minerals[D]. Dalian: Dalian University of Technology, 2012.
25 AYUSO E , SANCHEZ A . Removal of heavy metals from waste waters by natural and Na-exchanged bentonites[J]. Clays and Clay Minerals, 2003, 51 (5): 475- 480.
doi: 10.1346/CCMN.2003.0510501
26 汤鹏成, 傅开彬, 钟秋红, 等. 广西田东天然钙基膨润土对Cu(Ⅱ)的吸附性能研究[J]. 非金属矿, 2019, 42 (6): 77- 81.
TANG Pengcheng , FU Kaibin , ZHONG Qiuhong , et al. Research on the adsorption properties of Cu(Ⅱ) on natural Ca-Bentonite from Tiandong, Guangxi[J]. Non-Metallic Mines, 2019, 42 (6): 77- 81.
27 SADEGHALVAD B , KHOSRAVI S , AZADMEHR A . Nonlinear isotherm and kinetics of adsorption of copper from aqueous solutions on bentonite[J]. Russian Journal of Physical Chemistry A, 2016, 90 (11): 2285- 2291.
doi: 10.1134/S0036024416110030
28 施华珍, 刘坤, 汤睿, 等. 有机改性磁性碱性钙基膨润土的制备及对Cu(Ⅱ)和Mn(Ⅱ)的吸附[J]. 化工进展, 2018, 37 (11): 4509- 4521.
SHI Huazhen , LIU Kun , TANG Rui , et al. Organically modification of magnetic alkaline Ca-bentonite and its adsorption for Cu(Ⅱ) and Mn(Ⅱ)[J]. Chemical Industry and Engineering Progress, 2018, 37 (11): 4509- 4521.
29 OWOLABI B , UNUABONAH E . Adsorption of Zn2+ and Cu2+ onto sulphate and phosphate-modified bentonite[J]. Applied Clay Science, 2011, 51 (2): 170- 173.
[1] 郑玉珍,孙波. 基于NaHSO3活化KMnO4原位生成三价锰的有机污染物降解[J]. 山东大学学报 (工学版), 2022, 52(3): 117-126.
[2] 陈龙,支鹏飞,李晋,陈宏斌,何兆益,崔新壮. 新旧沥青界面融合实测与耗散粒子动力学模拟[J]. 山东大学学报 (工学版), 2022, 52(3): 61-69.
[3] 耿麒,张俊杰,汪珂,路宇峰,谢立扬,叶敏. 基于FEM-SPH耦合的TBM滚刀切削仿真与试验研究[J]. 山东大学学报 (工学版), 2022, 52(1): 93-102.
[4] 黄淑亭,翟晓宇,刘延俊,史宏达. 淹没深度对三自由度波能浮子获能的影响[J]. 山东大学学报 (工学版), 2020, 50(6): 17-22.
[5] 朱向前,魏峥嵘,裴彦良,于凯本,宗乐. 深拖地震线列阵的动力学建模与位置预报[J]. 山东大学学报 (工学版), 2020, 50(6): 9-16.
[6] 任昭鹏,奚瑞,王生海,张志江,陈海泉. 船用起重机三索限位式防摇摆装置设计[J]. 山东大学学报 (工学版), 2020, 50(3): 125-132142.
[7] 胡浩威,刘爽,方廷勇. 纳米结构中浸入特性的非平衡分子动力学模拟[J]. 山东大学学报 (工学版), 2019, 49(4): 108-114, 122.
[8] 张宇磊,王勇,谢玉东,孙光,王艳芸,韩家桢. 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报 (工学版), 2019, 49(1): 101-106.
[9] 肖迪,廉静,纪少波,赵盛晋,徐怀民. 臭氧对甲烷/空气层流火焰传播速度影响规律[J]. 山东大学学报(工学版), 2017, 47(4): 59-63.
[10] 崔青,张长桥,修建新,许士明,卢丽丽. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47(2): 123-130.
[11] 莫正波,胡松涛,胡德栋. 低浓度下亚氯酸钠与盐酸制备二氧化氯的试验研究[J]. 山东大学学报(工学版), 2017, 47(2): 100-105.
[12] 李晓飞,王雷,贾磊,蔡文剑. 斜向和纵向紧凑微流化床设计及其性能[J]. 山东大学学报(工学版), 2016, 46(6): 76-82.
[13] 董震,赖艳华,吕明新,郑皓宇,潘继红. 吸附剂综合性能测试与分析[J]. 山东大学学报(工学版), 2016, 46(5): 120-125.
[14] 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110.
[15] 白艳艳,曹月欣,张宪玺,张鲁格,孙德志,延辉,张翀. SDS对香豆素在SB-16胶束增溶行为影响[J]. 山东大学学报(工学版), 2016, 46(3): 99-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .