Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (4): 40-47.doi: 10.6040/j.issn.1672-3961.0.2024.183

• Special Issue for Deep Learning with Vision • Previous Articles    

Industrial product surface defect detection based on self supervised convolution and parameter free attention mechanism

ZHOU Qunying, SUI Jiacheng, ZHANG Ji*, WANG Hongyuan   

  1. ZHOU Qunying, SUI Jiacheng, ZHANG Ji*, WANG Hongyuan (College of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, Jiangsu, China
  • Published:2025-08-31

Abstract: Currently, surface defect detection in industrial products using deep learning faced several challenges. These included a limited number of negative sample datasets, susceptibility to complex industrial environments that hindered effective feature extraction, and high labor cost for labeling datasets. In order to solve the above problems,a knowledge distillation-based surface defect detection method for industrial products was proposed. The model incorporated a self-supervised predictive convolution module and a parameter-free attention mechanism. It transferred the rich feature knowledge learned by the teacher network to the student network. This approach effectively improved the model feature expression and localized defects at the pixel level. The model was experimented on the MVTec-AD dataset, and the comparison results with the state-of-the-art experimental methods showed that its detection and localization metrics were improved on AROC. The results proved that the method could improve the model's detection and localization capabilities.

Key words: surface defect detection of industrial products, deep learning, knowledge distillation, self supervised prediction, attention mechanism

CLC Number: 

  • TP391
[1] 孙博言, 王洪元, 刘乾, 等. 基于多尺度和注意力机制的混合监督金属表面缺陷检测[J]. 智能系统学报, 2023, 18(4): 886-893. SUN Boyan, WANG Hongyuan, LIU Qian, et al. Hybrid supervised metal surface defect detection based on multi-scale and attention[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 886-893.
[2] 李键, 李华, 胡翔坤, 等. 基于深度学习的表面缺陷检测技术研究进展[J]. 计算机集成制造系统, 2024, 30(3): 774-790. LI Jian, LI Hua, HU Xiangkun, et al. Research progress of surface defect detection technology based on deep learning[J].Computer Integrated Manufacturing System, 2024, 30(3):774-790.
[3] CHUA L O. CNN: a paradigm for complexity[M].Santiago, Chile: World Scientific Publishing Co. Pte Ltd., 1999: 529-837.
[4] NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644-1649.
[5] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[J]. Advances in Neural Information Processing Systems, 1993, 7(4):669-688.
[6] WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 2016, 184: 232-242.
[7] ZHENG X Q, WANG H C, CHEN J, et al. A generic semi-supervised deep learning-based approach for automated surface inspection[J]. IEEE Access, 2020, 8: 114088-114099.
[8] 成科扬, 丁杨柳, 詹永照,等. 基于回顾蒸馏学习的无监督工业品缺陷检测方法[J]. 南京大学学报(自然科学版), 2022, 58(6): 1030-1040. CHENG Keyang, DING Yangliu, ZHAN Yongzhao, et al. Unsupervised industrial product defect detection method based on retrospective distillation learning [J].Journal of Nanjing University(Natural Science Edition), 2022, 58(6): 1030-1040.
[9] BUCILUĂ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA. ACM, 2006: 535-541.
[10] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2024-03-12]. https://arxiv.org/abs/1503.02531
[11] GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
[12] YU L, YAZICI V O, LIU X L, et al. Learning metrics from teachers: compact networks for image embedding[C] //Knowledge Distillation: A Survey.Long Beach, USA: IEEE, 2019: 2907-2916.
[13] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 3962-3971.
[14] CHEN M H, LAINA I, VEDALDI A. Training-free layout control with cross-attention guidance[C] //2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2024: 5331-5341.
[15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, USA:IEEE, 2018: 7132-7141.
[16] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2020. Seattle, WA, USA:IEEE, 2020: 13-19.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] // Computer Vision-ECCV 2018. Munich,Germany: Springer International Publishing, 2018: 3-19.
[18] LI X, WANG W H, HU X L, et al. Selective kernel networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,USA: IEEE, 2019: 510-519.
[19] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C] //2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009: 248-255.
[20] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 9592-9600.
[21] HENDRYCKS D, GIMPEL K, NOVELLO P, et al. A baseline for detecting misclassified and out-of-distribution examples in neural networks[EB/OL].(2016-10-07)[2024-03-12]. https://arxiv.org/abs/1610.02136v3
[22] SABOKROU M, POURREZA M, FAYYAZ M, et al. AVID: adversarial visual irregularity detection[C] // Computer Vision-ACCV 2018. Perth, Australia: Springer International Publishing, 2019: 488-505.
[23] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C] // Information Processing in Medical Imaging. Orlando, USA: Springer International Publishing, 2017: 146-157.
[24] BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL].(2018-07-05)[2024-03-12]. https://arxiv.org/abs/1807.02011v3
[25] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C] // Proceedings of the international conference on machine learning. Stockholm, Sweden: ICML, 2018: 4393-4402.
[26] DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[EB/OL].(2020-02-10)[2024-03-12]. https://arxiv.org/abs/2002.03734v1
[27] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, USA: IEEE, 2021: 14902-14912.
[28] NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): 209-224.
[29] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C] //2021 IEEE Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2021: 3560-3569.
[1] LI Feng, WEN Yimin. Multi-scale visual and textual semantic feature fusion for image captioning [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 80-87.
[2] DONG Mingshu, CHEN Liqi, MA Chuanyi, ZHANG Zhuhao, SUN Renjuan, GUAN Yanhua, ZHUANG Peizhi. Deep learning-based intelligent judgment for radar detection of pavement cracks [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 72-79.
[3] XUE Bingbing, WANG Yong, YANG Weihao, WANG Chuan, YU Di, WANG Xu. Real-time expressway traffic data imputation and state prediction based on ETC system data [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 58-71.
[4] WANG Yuou, YUAN Yingchun, HE Zhenxue, WANG Kejian. A relation extraction method based on improved RoBERTa, multiple-instance learning and dual attention mechanism [J]. Journal of Shandong University(Engineering Science), 2025, 55(2): 78-87.
[5] Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7.
[6] Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114.
[7] Xinzhang WU,Xiangyu LIANG,Hongyu ZHU,Dongdong ZHANG. Short-term wind power prediction based on CEEMDAN-GRA-PCC-ATCN [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 146-156.
[8] Tongyu JIANG, Fan CHEN, Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8.
[9] Jianqing WU,Xiuguang SONG. Review on development of simultaneous localization and mapping technology [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31.
[10] Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7.
[11] Qingfa CHAI,Shoujing SUN,Jifu QIU,Ming CHEN,Zhen WEI,Wei CONG. Prediction method of power grid emergency supplies under meteorological disasters [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 76-83.
[12] YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21.
[13] ZHANG Qinyang, LI Xu, YAO Chunlong, LI Changwu. Aspect-level sentiment classification combined with syntactic dependency information [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 83-89.
[14] LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97.
[15] Junsan ZHANG,Qiaoqiao CHENG,Yao WAN,Jie ZHU,Shidong ZHANG. MIRGAN: a medical image report generation model based on GAN [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 9-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!