Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (4): 40-47.doi: 10.6040/j.issn.1672-3961.0.2024.183
• Special Issue for Deep Learning with Vision • Previous Articles
ZHOU Qunying, SUI Jiacheng, ZHANG Ji*, WANG Hongyuan
CLC Number:
| [1] 孙博言, 王洪元, 刘乾, 等. 基于多尺度和注意力机制的混合监督金属表面缺陷检测[J]. 智能系统学报, 2023, 18(4): 886-893. SUN Boyan, WANG Hongyuan, LIU Qian, et al. Hybrid supervised metal surface defect detection based on multi-scale and attention[J]. CAAI Transactions on Intelligent Systems, 2023, 18(4): 886-893. [2] 李键, 李华, 胡翔坤, 等. 基于深度学习的表面缺陷检测技术研究进展[J]. 计算机集成制造系统, 2024, 30(3): 774-790. LI Jian, LI Hua, HU Xiangkun, et al. Research progress of surface defect detection technology based on deep learning[J].Computer Integrated Manufacturing System, 2024, 30(3):774-790. [3] CHUA L O. CNN: a paradigm for complexity[M].Santiago, Chile: World Scientific Publishing Co. Pte Ltd., 1999: 529-837. [4] NG H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644-1649. [5] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[J]. Advances in Neural Information Processing Systems, 1993, 7(4):669-688. [6] WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction[J]. Neurocomputing, 2016, 184: 232-242. [7] ZHENG X Q, WANG H C, CHEN J, et al. A generic semi-supervised deep learning-based approach for automated surface inspection[J]. IEEE Access, 2020, 8: 114088-114099. [8] 成科扬, 丁杨柳, 詹永照,等. 基于回顾蒸馏学习的无监督工业品缺陷检测方法[J]. 南京大学学报(自然科学版), 2022, 58(6): 1030-1040. CHENG Keyang, DING Yangliu, ZHAN Yongzhao, et al. Unsupervised industrial product defect detection method based on retrospective distillation learning [J].Journal of Nanjing University(Natural Science Edition), 2022, 58(6): 1030-1040. [9] BUCILUĂ C, CARUANA R, NICULESCU-MIZIL A. Model compression[C] //Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia, USA. ACM, 2006: 535-541. [10] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2024-03-12]. https://arxiv.org/abs/1503.02531 [11] GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819. [12] YU L, YAZICI V O, LIU X L, et al. Learning metrics from teachers: compact networks for image embedding[C] //Knowledge Distillation: A Survey.Long Beach, USA: IEEE, 2019: 2907-2916. [13] PARK W, KIM D, LU Y, et al. Relational knowledge distillation[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 3962-3971. [14] CHEN M H, LAINA I, VEDALDI A. Training-free layout control with cross-attention guidance[C] //2024 IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2024: 5331-5341. [15] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, USA:IEEE, 2018: 7132-7141. [16] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). 2020. Seattle, WA, USA:IEEE, 2020: 13-19. [17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] // Computer Vision-ECCV 2018. Munich,Germany: Springer International Publishing, 2018: 3-19. [18] LI X, WANG W H, HU X L, et al. Selective kernel networks[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,USA: IEEE, 2019: 510-519. [19] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C] //2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009: 248-255. [20] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C] //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach, USA:IEEE, 2019: 9592-9600. [21] HENDRYCKS D, GIMPEL K, NOVELLO P, et al. A baseline for detecting misclassified and out-of-distribution examples in neural networks[EB/OL].(2016-10-07)[2024-03-12]. https://arxiv.org/abs/1610.02136v3 [22] SABOKROU M, POURREZA M, FAYYAZ M, et al. AVID: adversarial visual irregularity detection[C] // Computer Vision-ACCV 2018. Perth, Australia: Springer International Publishing, 2019: 488-505. [23] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C] // Information Processing in Medical Imaging. Orlando, USA: Springer International Publishing, 2017: 146-157. [24] BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[EB/OL].(2018-07-05)[2024-03-12]. https://arxiv.org/abs/1807.02011v3 [25] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C] // Proceedings of the international conference on machine learning. Stockholm, Sweden: ICML, 2018: 4393-4402. [26] DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[EB/OL].(2020-02-10)[2024-03-12]. https://arxiv.org/abs/2002.03734v1 [27] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, USA: IEEE, 2021: 14902-14912. [28] NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): 209-224. [29] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C] //2021 IEEE Winter Conference on Applications of Computer Vision(WACV). Waikoloa, Hawaii, USA:IEEE, 2021: 3560-3569. |
| [1] | LI Feng, WEN Yimin. Multi-scale visual and textual semantic feature fusion for image captioning [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 80-87. |
| [2] | DONG Mingshu, CHEN Liqi, MA Chuanyi, ZHANG Zhuhao, SUN Renjuan, GUAN Yanhua, ZHUANG Peizhi. Deep learning-based intelligent judgment for radar detection of pavement cracks [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 72-79. |
| [3] | XUE Bingbing, WANG Yong, YANG Weihao, WANG Chuan, YU Di, WANG Xu. Real-time expressway traffic data imputation and state prediction based on ETC system data [J]. Journal of Shandong University(Engineering Science), 2025, 55(3): 58-71. |
| [4] | WANG Yuou, YUAN Yingchun, HE Zhenxue, WANG Kejian. A relation extraction method based on improved RoBERTa, multiple-instance learning and dual attention mechanism [J]. Journal of Shandong University(Engineering Science), 2025, 55(2): 78-87. |
| [5] | Jiachun LI,Bowen LI,Jianbo CHANG. An efficient and lightweight RGB frame-level face anti-spoofing model [J]. Journal of Shandong University(Engineering Science), 2023, 53(6): 1-7. |
| [6] | Yue YUAN,Yanli WANG,Kan LIU. Named entity recognition model based on dilated convolutional block architecture [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 105-114. |
| [7] | Xinzhang WU,Xiangyu LIANG,Hongyu ZHU,Dongdong ZHANG. Short-term wind power prediction based on CEEMDAN-GRA-PCC-ATCN [J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 146-156. |
| [8] | Tongyu JIANG, Fan CHEN, Hongjie HE. Lightweight face super-resolution network based on asymmetric U-pyramid reconstruction [J]. Journal of Shandong University(Engineering Science), 2022, 52(1): 1-8. |
| [9] | Jianqing WU,Xiuguang SONG. Review on development of simultaneous localization and mapping technology [J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 16-31. |
| [10] | Ye LIANG,Nan MA,Hongzhe LIU. Image-dependent fusion method for saliency maps [J]. Journal of Shandong University(Engineering Science), 2021, 51(4): 1-7. |
| [11] | Qingfa CHAI,Shoujing SUN,Jifu QIU,Ming CHEN,Zhen WEI,Wei CONG. Prediction method of power grid emergency supplies under meteorological disasters [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 76-83. |
| [12] | YANG Xiuyuan, PENG Tao, YANG Liang, LIN Hongfei. Adaptive multi-domain sentiment analysis based on knowledge distillation [J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 15-21. |
| [13] | ZHANG Qinyang, LI Xu, YAO Chunlong, LI Changwu. Aspect-level sentiment classification combined with syntactic dependency information [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 83-89. |
| [14] | LIAO Jinping, MO Yuchang, YAN Ke. Model and application of short-term electricity consumption forecast based on C-LSTM [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 90-97. |
| [15] | Junsan ZHANG,Qiaoqiao CHENG,Yao WAN,Jie ZHU,Shidong ZHANG. MIRGAN: a medical image report generation model based on GAN [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 9-18. |
|
||