Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 88-96.doi: 10.6040/j.issn.1672-3961.0.2024.184
• Machine Learning & Data Mining • Previous Articles Next Articles
ZHOU Yanbing, MA Shilun, WEN Yimin*
CLC Number:
| [1] GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C] // Advances in Artificial Intelligence-SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence. Sao Luis, Brazil: Springer, 2004: 286-295. [2] FRIAS-BLANCO I, DEL CAMPO-ÁVILA J, RAMOS-JIMENEZ G, et al. Online and non-parametric drift detection methods based on Hoeffdings bounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3): 810-823. [3] BERTINI J R, ZHAO L, MOTTA R, et al. A nonparametric classification method based on k-associated graphs[J]. Information Sciences, 2011, 181(24): 5435-5456. [4] BAYRAM F, AHMED B S, KASSLER A. From concept drift to model degradation: an overview on performance-aware drift detectors[J]. Knowledge-Based Systems, 2022, 245: 108632-108651. [5] PESARANGHADER A, VIKTOR H L. Fast hoeffding drift detection method for evolving data streams[C] //Machine Learning and Knowledge Discovery in Databases: European Conference. Riva del Garda, Italy: Springer, 2016: 96-111. [6] PESARANGHADER A, VIKTOR H, PAQUET E. Reservoir of diverse adaptive learners and stacking fast hoeffding drift detection methods for evolving data streams[J]. Machine Learning, 2018, 107(11): 1711-1743. [7] YAN M M W. Accurate detecting concept drift in evolving data streams[J]. ICT Express, 2020, 6(4): 332-338. [8] BAENA-GARCIA M, DEL CAMPO-ÁVILA J, FIDALGO R, et al. Early drift detection method[C] //Fourth international workshop on knowledge discovery from data streams. Berlin, Germany: ACM, 2006, 6: 77-86. [9] BIFET A, GAVALDA R. Learning from time-changing data with adaptive windowing[C] //Proceedings of the 2007 SIAM international conference on data mining. Minneapolis, USA: SIMA, 2007: 443-448. [10] NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C] //International conference on discovery science. Berlin, Germany: Springer, 2007: 264-269. [11] DE LIMA CABRAL D R, DE BARROS R S M. Concept drift detection based on Fishers exact test[J]. Information Sciences, 2018, 442: 220-234. [12] FISHER R A. On the interpretation of χ2 from contingency tables, and the calculation of P[J]. Journal of the Royal Statistical Society, 1922, 85(1): 87-94. [13] DE BARROS R S M, HIDALGO J I G, DE LIMA CABRAL D R. Wilcoxon rank sum test drift detector[J]. Neurocomputing, 2018, 275: 1954-1963. [14] WILCOXON F. Individual comparisons by ranking methods[M]. New York: Springer, 1992: 196-202. [15] HIDALGO J I G, MARIÑO L M P, DE BARROS R S M. Cosine similarity drift detector[C] //International Conference on Artificial Neural Networks.Munich, Germany: Springer, 2019: 669-685. [16] MINKU L L, YAO X. DDD: A new ensemble approach for dealing with concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 24(4): 619-633. [17] SIDHU P, BHATIA M P S. An online ensembles approach for handling concept drift in data streams: diversified online ensembles detection[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(6): 883-909. [18] MAHDI O A, PARDEDE E, ALI N. A hybrid block-based ensemble framework for the multi-class problem to react to different types of drifts[J]. Cluster Computing, 2021, 24(3): 2327-2340. [19] BERTINI J R, ZHAO L, LOPES A A. An incremental learning algorithm based on the K-associated graph for non-stationary data classification[J]. Information Sciences, 2013, 246: 52-68. [20] BERTINI J R, LOPES A A, ZHAO L. Partially labeled data stream classification with the semi-supervised K-associated graph[J]. Journal of the Brazilian Computer Society, 2012, 18: 299-310. [21] DA SILVA A T, BERTINI J R. Using the k-associated optimal graph to provide counterfactual explanations[C] //IEEE International Conference on Fuzzy Systems. Padua, Italy: IEEE, 2022: 1-8. |
| [1] | Xiushan NIE,Yuling MA,Huiyan QIAO,Jie GUO,Chaoran CUI,Zhiyun YU,Xingbo LIU,Yilong YIN. Survey on student academic performance prediction from the perspective of task granularity [J]. Journal of Shandong University(Engineering Science), 2022, 52(2): 1-14. |
| [2] | Si YANG, Sitong LI, Jindong ZHANG, Yu BAI. Improvement of bandwidth model for high speed optical communicationlaser and its optimization by parallel computing [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 17-22. |
| [3] | Yao LI, Zhihai WANG, Yan′ge SUN, Wei ZHANG. An adaptive ensemble classification method based on deep attribute weighting for data stream [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 44-55. |
| [4] | YE Ziyun, YANG Jinfeng. A finger-vein recognition method based on weighted graph model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 103-109. |
| [5] | PANG Renming, WANG Bo, YE Hao, ZHANG Haifeng, LI Mingliang. Clustering of blast furnace historical data based on PCA similarity factor and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 143-149. |
| [6] | ZHOU Zhe, SHANG Lin. A sentiment analysis method based on dynamic lexicon and three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 19-23. |
| [7] | ZHU Quan-yin1, YAN Yun-yang1, ZHOU Pei1, GU Tian-feng2. Price forecasting model based on linear backfilling and adaptive sliding windows [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 53-58. |
| [8] | GUO Gong-de1,2, LI Nan1,2, CHEN Li-fei1,2. A self-adaptive classification method for conceptdrifting data streams [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 1-7. |
| [9] | WANG Ai-guo, LI Lian*, YANG Jing, CHEN Gui-lin. An algorithm based on Bayesian network for web page recommendation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 137-142. |
| [10] | JU Chun-hua1,2, CHEN Zhi-qi1*. A method of fuzzy integral ensemble classifiers for handling concept-drifting data streams [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 44-48. |
| [11] | SONG Wei, LIU Wen-bo, LI Jin-hong. Concurrent frequent itemsets mining algorithm based on dynamic prune of FP-tree [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 49-55. |
| [12] |
ZHANG Xinmeng, JIANG Shengyi.
An algorithm for clustering uncertain categorical data based on similarity probability [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 12-16. |
| [13] | SUN Jing-yu, YU Xue-li, CHEN Jun-jie, LI Xian-hua. Sampled peculiarity factor and its application in anomaly detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 56-59. |
| [14] | DONG Ai-Feng, DIAO Ge-Ji, SCHOMMER Christoph. A fingerprint engine for author profiling [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 27-31. |
| [15] | SUN Yuqing,ZHAO Rui,YAO Qing,SHI Bin,LIU Jia . A meshbased clustering algorithm in the presence of obstacles [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 86-90 . |
|