Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 44-55, 66.doi: 10.6040/j.issn.1672-3961.0.2018.198

• Machine Learning & Data Mining • Previous Articles     Next Articles

An adaptive ensemble classification method based on deep attribute weighting for data stream

Yao LI(),Zhihai WANG*(),Yan′ge SUN,Wei ZHANG   

  1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2018-05-25 Online:2018-12-20 Published:2018-12-26
  • Contact: Zhihai WANG E-mail:16120396@bjtu.edu.cn;zhhwang@bjtu.edu.cn
  • Supported by:
    北京市自然科学基金(4182052);国家自然科学基金(61672086);国家自然科学基金(61702030);国家自然科学基金(61771058)

Abstract:

Due to most of the existing data stream ensemble classification algorithms without considering the importance of historical data in the evaluation of the base classifier, while ignoring the treatment of interference with irrelevant attributes and noise attributes, an adaptive ensemble classification method based on deep attribute weighting for data stream (EMDAW) was proposed to effectively combine multiple naive Bayesian models based on depth attribute weighting. In different data blocks, the contribution of different attribute values to the attribution of class attributes was deeply analyzed, and the learned local attribute weights to different attribute values were applied to reduce noise data interference. In the evaluation of the base classifier, the importance of the historical data and the current latest data was weighed. The sub-classifier combination was used to improve the overall classification performance by using the combined voting strategy based on the test case classifier confidence and classification correct rate. By comparing experiments with classical algorithms on multiple benchmark datasets, the proposed algorithm had certain advantages in classification correct rate and concept drift adaptability.

Key words: data stream, ensemble classification, deep attribute weighting, concept drift, adaptive

CLC Number: 

  • TP391

Fig.1

Different types of concept drift"

Fig.2

Structure of attribute weighted na?ve Bayes"

Fig.3

Algorithm framework of EMDAW"

Table 1

The characters of several datasets"

数据集 实例数 属性数目 类标数 噪声比例/% 漂移数 漂移类型
HYP 1 000 000 10 2 5 1 增量式漂移
SEA 1 000 000 3 4 10 9 突变漂移
LEDM 1 000 000 24 10 10 3 混合漂移
LEDND 1 000 000 24 10 20 0
Cover type 581 000 53 7 未知
Electricity 45 000 7 2 未知
Poker 1 000 000 10 10 未知
Spam 9 342 500 2 未知

Table 2

Comparison of classification correct rates of several base classifiers"

%
分类器模型 HYP SEAF LEDm LEDnd Cover type Electricity Poker Spam
DAW 72.34 84.34 67.44 51.57 82.36 79.12 83.44 84.25
NB 77.48 84.86 67.14 51.27 66.04 77.88 59.46 80.25
HOT 75.46 85.78 67.22 51.13 74.93 77.12 83.36 78.09

Fig.4

The classification correct rate of different algorithms under different number of ensemble classifiers"

Fig.5

Average classification correct rate of the proposed algorithm under different parameters"

Table 3

The classification correct rate of different datasets with different data chunks"

%
数据集 数据块大小
500 750 1 000 1 250 1 500 1 750 2 000
HYP 84.27 85.39 85.97 86.19 86.29 86.60 86.59
SEAF 82.80 83.56 84.25 84.95 85.19 85.44 85.53
Electricity 77.14 77.27 79.33 78.69 78.12 78.50 78.51
Cover type 83.47 83.93 84.25 81.76 81.58 81.03 79.15

Table 4

The classification correct rate of each data set under different values ofparameter k with the ensemble strategy"

%
数据集 50 100 150 200
HYP 84.33 85.97 85.50 85.52
SEAF 83.80 84.71 84.83 84.33
Electricity 77.35 79.35 78.53 78.62
Cover type 84.04 84.25 84.02 83.84

Table 5

Average chunk training time of different classification algorithms"

ms
数据集 AWE AUE2 DDM NB Oza DWM NSE EMDAW
HYP 239.1 156.2 1 333.6 0.2 104.5 4 384.2 331.6 460.4
SEAF 87.0 42.1 32.1 0.1 378.8 1 246.2 262.5 358.1
LEDM 230.1 150.3 101.3 0.2 124.6 108.6 534.6 125.1
LEDND 230.6 150.6 120.2 0.2 132.6 120.5 834.6 142.3
Cover type 296.6 133.2 349.4 0.8 447.3 63.5 640.0 260.9
Electricity 290.1 180.6 85.3 0.4 408.8 40.2 173.3 318.6
Poker 173.5 155.7 42.8 0.2 314.6 49.2 762.8 544.4
Spam 750.6 669.5 191.6 3.6 810.5 24.6 152.2 197.9

Table 6

Average classification correct rate of different classification algorithms"

%
数据集 AWE AUE2 DDM NB Oza DWM NSE EMDAW
HYP 82.45 83.54 76.54 77.48 83.05 82.93 84.43 85.97
SEAF 84.05 86.77 84.95 84.86 85.04 85.38 83.01 84.71
LEDM 67.08 67.58 66.70 67.14 67.55 67.12 62.86 67.21
LEDND 51.27 51.26 51.18 51.27 51.23 51.26 47.16 50.57
Cover type 81.70 84.05 74.36 66.04 80.52 77.29 79.70 84.25
Electricity 77.67 78.21 76.25 77.88 77.34 76.69 76.70 79.35
Poker 53.87 66.88 62.14 59.46 65.19 60.72 53.73 62.60
Spam 74.86 72.23 77.25 80.25 78.92 80.26 68.78 81.37

Fig.6

The algorithms average classification correct rate ofdifferent chunksize"

Fig.7

The classification correct rate on the SEA dataset"

Fig.8

The classification correct rate on the HYP dataset"

Fig.9

The classification correct rate on the Electricity dataset"

Fig.10

The classification correct rate on the LEDm dataset"

1 GAMA J , ŽLIOBAITE I , BIFET A , et al. A survey on concept drift adaptation[J]. ACM Computing Surveys (CSUR), 2014, 46 (4): 44.
2 DIETTERICH T G. Ensemble methods in machine learning[C]//Proceedings of the International Workshop on Multiple Classifier Systems. New York, USA: ACM, 2000: 1-15.
3 TSYMBAL A. The problem of concept drift: definitions and related work[R]. Dublin, Ireland, Trinity College, 2004.
4 WEBB G I , HYDE R , CAO H , et al. Characterizing concept drift[J]. Data Mining and Knowledge Discovery, 2016, 30 (4): 964- 994.
5 亓开元, 赵卓峰, 房俊, 等. 针对高速数据流的大规模数据实时处理方法[J]. 计算机学报, 2012, 35 (3): 477- 490.
QI Kaiyuan , ZHAO Zhuofeng , FANG Jun , et al. Real-time processing for high speed data stream over lame scale data[J]. Chinese Journal of Computers, 2012, 35 (3): 477- 490.
6 GAMA J . Knowledge discovery from data streams[M]. Florida, USA: CRC Press, 2010.
7 WANG Haixun, WEI Fan, YU P S, et al. Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2003: 226-235.
8 HOMAYOUN S , AHMADZADEH M . A review on data stream classification approaches[J]. Journal of Advanced Computer Science & Technology, 2016, 5 (1): 8- 13.
9 STREET W N, KIM Y S. A streaming ensemble algorithm (sea) for large-scale classification[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2001: 377-382.
10 SUN Yu , TANG Ke , MINKU L L , et al. Online ensemble learning of data streams with gradually evolved classes[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28 (6): 1532- 1545.
doi: 10.1109/TKDE.2016.2526675
11 BRZEZINSKI D , STEFANOWSKJ J . Reacting to different types of concept drift: The accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25 (1): 81- 94.
doi: 10.1109/TNNLS.2013.2251352
12 BIFET A, HOLMES G, PFAHRINGER B, et al. New ensemble methods for evolving data streams[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge discovery and Data Mining. New York, USA: ACM, 2009: 139-148.
13 FREUND Y , SCHAPIRE R E . A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1): 119- 139.
doi: 10.1006/jcss.1997.1504
14 ELWELL R , POLIKAR R . Incremental learning of concept drift in nonstationary environments[J]. IEEE Transactions on Neural Networks, 2011, 22 (10): 1517- 1531.
doi: 10.1109/TNN.2011.2160459
15 桂林, 张玉红, 胡学钢. 一种基于混合集成方法的数据流概念漂移检测方法[J]. 计算机科学, 2012, 39 (1): 152- 155.
doi: 10.3969/j.issn.1002-137X.2012.01.034
GUI Lin , ZHANG Yuhong , HU Xuegang . Data stream concept drift detection method based on mixture ensemble method[J]. Computer Science, 2012, 39 (1): 152- 155.
doi: 10.3969/j.issn.1002-137X.2012.01.034
16 赵强利, 蒋艳凰, 卢宇彤. 具有回忆和遗忘机制的数据流挖掘模型与算法[J]. 软件学报, 2015, 26 (10): 2567- 2580.
ZHAO Qiangli , JIANG Yanhuang , LU Yutong . Ensemble model and algorithm with recalling and forgetting mechanism for data stream mining[J]. Journal of Software, 2015, 26 (10): 2567- 2580.
17 WANG S K, DAI B R. A g-means update ensemble learning approach for the imbalanced data stream with concept drifts[C]//International Conference on Big Data Analytics and Knowledge Discovery. Berlin, Germany: Springer, 2016: 255-266.
18 SUN YU , TANG KE , ZHU ZEXUAN , et al. Concept drift adaptation by exploiting historical knowledge[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 1- 10.
19 ZHANG H, SHENG Shengli. Learning weighted naive bayes with accurate ranking[C]//Proceedings of the fourth International Conference on Data Mining. New Jersey, USA: IEEE, 2004: 567-570.
20 HALL M . A decision tree-based attribute weighting filter for naive Bayes[J]. Knowledge-Based Systems, 2007, 20 (2): 120- 126.
21 JIANG Liangxiao , LI Chaoqun , WANG Shasha , et al. Deep feature weighting for naive bayes and its application to text classification[J]. Engineering Applications of Artificial Intelligence, 2016, 52, 26- 39.
doi: 10.1016/j.engappai.2016.02.002
22 GROSSMAN D, DOMINGOS P. Learning bayesian network classifiers by maximizing conditional likelihood[C]//Proceedings of the twenty-first International Conference on Machine learning. New York, USA: ACM, 2004.
23 ZHU Ciyou , BYRD R H , LU Peihuang , et al. Algorithm 778: l-bfgs-b: fortran subroutines for large-scale bound-constrained optimization[J]. ACM Transactions on Mathematical Software, 1997, 23 (4): 550- 560.
doi: 10.1145/279232.279236
24 SONG Ge , YE Yunming , ZHANG Haijun , et al. Dynamic clustering forest: an ensemble framework to efficiently classify textual data stream with concept drift[J]. Information Sciences, 2016, 357, 125- 143.
doi: 10.1016/j.ins.2016.03.043
25 PIETRUCZUK L , RUTKOWSKI L , JAWORSKI M , et al. How to adjust an ensemble size in stream data mining[J]. Information Sciences, 2017, 381, 46- 54.
doi: 10.1016/j.ins.2016.10.028
26 BIFET A , HOLMES G , KIRKBY R , et al. Moa: massive online analysis[J]. Journal of Machine Learning Research, 2010, 11 (50): 1601- 1604.
27 OZA N C , RUSSELL S . Online ensemble learning[M]. Berkeley, USA: University of California, 2001.
28 KOLTER J Z , MALOOF M A . Dynamic weighted majority: an ensemble method for drifting concepts[J]. Journal of Machine Learning Research, 2007, (8): 2755- 2790.
29 HULTEN G, SPENCER L, DOMINGOS P. Mining time-changing data streams[C]//Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2001: 97-106.
[1] Lianming MOU. Weighted k sub-convex-hull classifier based on adaptive feature selection [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 32-37.
[2] MA Chicheng, GUO Zonghe, LIU Canchang, DAI Xiangjun, ZHANG Xinong, MAO Boyong. Dynamics charactersitics of flexible beams undergoing time varying mass [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 78-87.
[3] MA Hanjie, LIN Xia, XU Xiaohui, ZHANG Jian, ZHANG Zhisheng. Load optimization model of smart home management system based on adaptive particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(6): 57-62.
[4] YE Dan, ZHANG Tianyu, LI Kui. Adaptive fault-tolerant containment control for multi-agent systems with unknown global information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 1-6.
[5] CHU Zhenzhong, ZHU Daqi. Fault-tolerant control of autonomous underwater vehicle based on adaptive region tracking [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 57-63.
[6] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[7] TANG Qingshun, JIN Lu, LI Guodong, WU Chunfu. Robotic manipulators tracking control based on adaptive terminal sliding mode controller [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 45-53.
[8] SUN Meimei, HU Yun'an, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 45-51.
[9] YANG Xiulin1, HUANG Shuo2*, DENG Miao1, ZHANG Jihong1,3. Image fusion method based on saliency computation and adaptive PCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 35-42.
[10] ZHAI Dong-hai1,2, YU Jiang1, NIE Hong-yu1, CUI Jing-jing1, DU Jia1. Adaptive hot topic tracking model based on relevance feedback [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 7-12.
[11] XIA Hai-ying1, DU Hai-ming2,XU Lu-hui1, YAN Yuan-hui1. Facial expression recognition based on adaptive dictionary learning and sparse representation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 45-48.
[12] QI Shile, WANG Meiqing. Adaptive active contour model for weak boundary extractio [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 17-20.
[13] FANG Li-ying, LI Shuang, WANG Pu, CHEN Pei-yu. The application of varying coefficient model in the study of medical longitudinal data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 21-26.
[14] WEI Jian-ming, HU Yun-an, SUN Mei-mei. An adaptive interative learning control of the first-order nonlinear delay  system based on generalized tracking error [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 34-41.
[15] FU Yan-an1, LIU Hai-ying1, MENG Qing-hu1,2*. 3-d shape recovery from vce Image Based on Shading Information [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[6] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[8] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[9] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .
[10] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .