Journal of Shandong University(Engineering Science) ›› 2025, Vol. 55 ›› Issue (2): 88-96.doi: 10.6040/j.issn.1672-3961.0.2024.184
• Machine Learning & Data Mining • Previous Articles
ZHOU Yanbing, MA Shilun, WEN Yimin*
CLC Number:
[1] GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C] // Advances in Artificial Intelligence-SBIA 2004: 17th Brazilian Symposium on Artificial Intelligence. Sao Luis, Brazil: Springer, 2004: 286-295. [2] FRIAS-BLANCO I, DEL CAMPO-ÁVILA J, RAMOS-JIMENEZ G, et al. Online and non-parametric drift detection methods based on Hoeffdings bounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(3): 810-823. [3] BERTINI J R, ZHAO L, MOTTA R, et al. A nonparametric classification method based on k-associated graphs[J]. Information Sciences, 2011, 181(24): 5435-5456. [4] BAYRAM F, AHMED B S, KASSLER A. From concept drift to model degradation: an overview on performance-aware drift detectors[J]. Knowledge-Based Systems, 2022, 245: 108632-108651. [5] PESARANGHADER A, VIKTOR H L. Fast hoeffding drift detection method for evolving data streams[C] //Machine Learning and Knowledge Discovery in Databases: European Conference. Riva del Garda, Italy: Springer, 2016: 96-111. [6] PESARANGHADER A, VIKTOR H, PAQUET E. Reservoir of diverse adaptive learners and stacking fast hoeffding drift detection methods for evolving data streams[J]. Machine Learning, 2018, 107(11): 1711-1743. [7] YAN M M W. Accurate detecting concept drift in evolving data streams[J]. ICT Express, 2020, 6(4): 332-338. [8] BAENA-GARCIA M, DEL CAMPO-ÁVILA J, FIDALGO R, et al. Early drift detection method[C] //Fourth international workshop on knowledge discovery from data streams. Berlin, Germany: ACM, 2006, 6: 77-86. [9] BIFET A, GAVALDA R. Learning from time-changing data with adaptive windowing[C] //Proceedings of the 2007 SIAM international conference on data mining. Minneapolis, USA: SIMA, 2007: 443-448. [10] NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C] //International conference on discovery science. Berlin, Germany: Springer, 2007: 264-269. [11] DE LIMA CABRAL D R, DE BARROS R S M. Concept drift detection based on Fishers exact test[J]. Information Sciences, 2018, 442: 220-234. [12] FISHER R A. On the interpretation of χ2 from contingency tables, and the calculation of P[J]. Journal of the Royal Statistical Society, 1922, 85(1): 87-94. [13] DE BARROS R S M, HIDALGO J I G, DE LIMA CABRAL D R. Wilcoxon rank sum test drift detector[J]. Neurocomputing, 2018, 275: 1954-1963. [14] WILCOXON F. Individual comparisons by ranking methods[M]. New York: Springer, 1992: 196-202. [15] HIDALGO J I G, MARIÑO L M P, DE BARROS R S M. Cosine similarity drift detector[C] //International Conference on Artificial Neural Networks.Munich, Germany: Springer, 2019: 669-685. [16] MINKU L L, YAO X. DDD: A new ensemble approach for dealing with concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 24(4): 619-633. [17] SIDHU P, BHATIA M P S. An online ensembles approach for handling concept drift in data streams: diversified online ensembles detection[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(6): 883-909. [18] MAHDI O A, PARDEDE E, ALI N. A hybrid block-based ensemble framework for the multi-class problem to react to different types of drifts[J]. Cluster Computing, 2021, 24(3): 2327-2340. [19] BERTINI J R, ZHAO L, LOPES A A. An incremental learning algorithm based on the K-associated graph for non-stationary data classification[J]. Information Sciences, 2013, 246: 52-68. [20] BERTINI J R, LOPES A A, ZHAO L. Partially labeled data stream classification with the semi-supervised K-associated graph[J]. Journal of the Brazilian Computer Society, 2012, 18: 299-310. [21] DA SILVA A T, BERTINI J R. Using the k-associated optimal graph to provide counterfactual explanations[C] //IEEE International Conference on Fuzzy Systems. Padua, Italy: IEEE, 2022: 1-8. |
[1] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[2] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[3] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[4] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[5] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[6] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[7] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[8] | CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7. |
[9] | YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202. |
[10] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[11] | LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70. |
[12] | WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61. |
[13] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
[14] | WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14. |
[15] | CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 13
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 40
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|