1 |
ZHANG J, HUA Y, QI G, et al. Semantic parsing for multiple-relation Chinese question answering[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 101-106.
|
2 |
LI Y, MIAO Q, YIN C, et al. A joint model of entity linking and predicate recognition for knowledge base question answering[C]// Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 95-100.
|
3 |
SUN Z, SONG L, YU J. A QA search algorithm based on the fusion integration of text similarity and graph computation[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 89-94.
|
4 |
NI H, LIN L, XU G. A relateness-based ranking method for knowledge-based question answering[C]//Proc of the Seventh CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Huhehot, China: Springer, 2018: 393-400.
|
5 |
LAI Y, JIA Y, LIN Y, et al. A Chinese question answering system for single-relation factoid questions[C]//Proc of the Sixth CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Dalian, China: Springer, 2017: 124-135.
|
6 |
LAI Y, LIN Y, CHEN J, et al. Open domain question answering system based on knowledge base[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 722-733.
|
7 |
LEI K, DENG Y, ZHANG B, et al. Open domain question answering with character-level deep learning models[C]//Proc of the 10th Int Symposium on Computational Intelligence and Design (ISCID). Hangzhou, China: IEEE, 2017: 30-33.
|
8 |
SHEN C , HUANG T , LIANG X , et al. Chinese knowledge base question answering by attention-based multi-granularity model[J]. Information, 2018, 9 (4): 1- 20.
|
9 |
YANG F, GAN L, LI A, et al. Combining deep learning with information retrieval for question answering[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 917-925.
|
10 |
XIE Z, ZENG Z, ZHOU G, et al. Knowledge base question answering based on deep learning models[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 300-311.
|
11 |
WANG L, ZHANG Y, LIU T. A deep learning approach for question answering over knowledge base[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 885-892.
|
12 |
PICHUAN C A, HUIHSIN T B, DAN J A, et al. Discriminative reordering with chinese grammatical relations features[C]//Proc of the Third Workshop on Syntax and Structure in Statistical Translation. Pennsylvania, USA: Association for Computational Linguistics, 2009: 51-59.
|
13 |
DE MARNEFFE M C, DOZAT T, SILVEIRA N, et al. Universal Stanford dependencies: A cross-linguistic typology[C]// Proc of the International Conference on Language Resources and Evaluation (LREC). Reykjavik, Iceland: European Language Resources Association, 2014: 4585-4592.
|
14 |
YAHYA M, BERBERICH K, ELBASSUONI S, et al. Deep answers for naturally asked questions on the web of data[C]//Proc of the 21st Int Conf on World Wide Web(WWW). Lyon, France: ACM, 2012: 445-449.
|
15 |
YAHYA M, BERBERICH K, ELBASSUONI S, et al. Robust question answering over the web of linked data[C]//Proc of the 22nd ACM Int Conf on Information & Knowledge Management (CIKM). New York, USA: Association for Computing Machinery, 2013: 1107-1116.
|
16 |
YAHYA M, BERBERICH K, ELBASSUONI S, et al. Natural language questions for the web of data[C]//Proc of the 2012 Joint Conf on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: Association for Computational Linguistics, 2012: 379-390.
|
17 |
YAHYA M. Question answering and query processing for extended knowledge graphs[D]. Saarland, German: Saarland University, 2016.
|
18 |
PRADEL C, PEYET G, HAEMMERLÉ O, et al. SWIP at QALD-3: Results, criticisms and lesson learned[C]// Proc of the 3rd Open Challenge on Question Answering over Linked Data (QALD). Valencia, Spain: CEUR-WS, 2013: 1-13.
|
19 |
PRADEL C, HAEMMERLÉ O, HERNANDEZ N. Natural language query translation into SPARQL using patterns[C]//Proc of the Fourth Int Workshop on Consuming Linked Data. Sydney, Australia: CEUR-WS, 2013: 1-12.
|
20 |
PRADEL C, HAEMMERLÉ O, HERNANDEZ N. SWIP: a natural language to SPARQL interface implemented with SPARQL[C]//Proc of the Int Conf on Conceptual Structures. Işi, Romania: Springer, 2014: 260-274.
|
21 |
XU K, FENG Y, HUANG S, et al. Question answering via phrasal semantic parsing[C]//Proc of the Int Conf of the Cross-Language Evaluation Forum for European Languages. Toulouse, France: Springer, 2015: 414-426.
|
22 |
XU K, ZHANG S, FENG Y, et al. Answering natural language questions via phrasal semantic parsing[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Shenzhen, China: Springer, 2014: 333-344.
|
23 |
HAKIMOV S, TUNC H, AKIMALIEV M, et al. Semantic question answering system over linked data using relational patterns[C]// Proc of the Joint EDBT/ICDT 2013 Workshops. Genoa, Italy: ACM, 2013: 83-88.
|
24 |
ZOU L, HUANG R, WANG H, et al. Natural language question answering over RDF: a graph data driven approach[C]//Proc of the 2014 ACM SIGMOD Int Conf on Management of Data. Utah, USA: ACM, 2014: 313-324.
|
25 |
LIU J , LI W , LUO L , et al. Linked open data query based on natural language[J]. Chinese Journal of Electronics, 2017, 26 (2): 230- 235.
doi: 10.1049/cje.2016.11.003
|
26 |
FINKEL J R, GRENAGER T, MANNING C. Incorporating non-local information into information extraction systems by gibbs sampling[C]//Proc of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL). Michigan, USA: Association for Computational Linguistics, 2005: 363-370.
|