Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 1-7.doi: 10.6040/j.issn.1672-3961.0.2019.417

• Machine Learning & Data Mining •     Next Articles

Semantic relation recognition for natural language question answering

Jiangli DUAN1,2(),Xin HU2,*()   

  1. 1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. College of Big Data and Intelligent Engineering, Yangtze Normal University, Chongqing 408100, China
  • Received:2019-07-22 Online:2020-06-20 Published:2020-06-16
  • Contact: Xin HU E-mail:d180201004@stu.cqupt.edu.cn;huxin@yznu.edu.cn
  • Supported by:
    重庆邮电大学博士研究生人才培养项目(BYJS201908);重庆市教委科技研究计划青年项目(KJQN201901414);长江师范学院高层次人才科研启动金项目(0107/011160052)

Abstract:

To avoid the deficiency of excessive dependence on named entity recognition during the understanding perio, logic relationships among vital information in Chinese natural language question were understood by semantic relation. An algorithm for recognizing semantic relations based on dependency structures was proposed, which first recognized three kinds of valuable dependency structures that were vital for obtaining semantic relations, and then combined or transformed these dependency structures to obtain semantic relations. The effectiveness and scalability of the proposed method were verified by extensive experiments over Chinese benchmark question answering datasets, and the experiments results showed that this method could also understand Chinese natural language questions when recognition of named entity failed.

Key words: knowledge graph, natural language question answering, semantic relation, dependency structure

CLC Number: 

  • TP391

Fig.1

Dependency structures and semantic relations"

Fig.2

Dependency structures and named entity"

Table 1

Three kinds of dependency structures"

分类 依赖结构集 备注
δsubject-predicate nsubj, nsubjpass, xsubj 主-谓依赖结构
δpredicate-object dobj 谓-宾依赖结构
δnmod nmod 谓-宾或主-宾依赖结构

Table 2

Results for combining S-P/P-O/nmod"

数据集 视角 Precision Recall F-measure
NLPCC2018 宏观 0.65 0.52 0.58
微观 0.45 0.52 0.47
CCKS2018 宏观 0.67 0.60 0.62
微观 0.58 0.57 0.58

Table 3

Comparative analysis of semantic relations recognition results in questions"

数据集 问句数量 正确识别语义关系的问句数量
本研究方法 其他方法[1-11]
NLPCC2018 122 61 0
CCKS2018 86 48 0

Table 4

Results for questions in named entity recognitionon empty question set"

数据集 视角 Precision Recall F-measure
NLPCC2018(61/122) 宏观 0.62 0.52 0.55
微观 0.45 0.50 0.47
CCKS2018(48/86) 宏观 0.62 0.49 0.58
微观 0.58 0.60 0.55

Table 5

Results for only combining S-P/P-O"

数据集 视角 Precision Recall F-measure
NLPCC2018 宏观 0.85 0.22 0.35
微观 0.22 0.22 0.22
CCKS2018 宏观 0.67 0.18 0.28
微观 0.17 0.18 0.17

Fig.3

Precision with increase of the number of questions"

Fig.4

Recall with increase of the number of questions"

Fig.5

F-measure with increase of the number of questions"

1 ZHANG J, HUA Y, QI G, et al. Semantic parsing for multiple-relation Chinese question answering[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 101-106.
2 LI Y, MIAO Q, YIN C, et al. A joint model of entity linking and predicate recognition for knowledge base question answering[C]// Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 95-100.
3 SUN Z, SONG L, YU J. A QA search algorithm based on the fusion integration of text similarity and graph computation[C]//Proc of the China Conf on Knowledge Graph and Semantic Computing (CCKS). Tianjin, China: CEUR-WS, 2018: 89-94.
4 NI H, LIN L, XU G. A relateness-based ranking method for knowledge-based question answering[C]//Proc of the Seventh CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Huhehot, China: Springer, 2018: 393-400.
5 LAI Y, JIA Y, LIN Y, et al. A Chinese question answering system for single-relation factoid questions[C]//Proc of the Sixth CCF Int Conf on Natural Language Processing and Chinese Computing (NLPCC). Dalian, China: Springer, 2017: 124-135.
6 LAI Y, LIN Y, CHEN J, et al. Open domain question answering system based on knowledge base[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 722-733.
7 LEI K, DENG Y, ZHANG B, et al. Open domain question answering with character-level deep learning models[C]//Proc of the 10th Int Symposium on Computational Intelligence and Design (ISCID). Hangzhou, China: IEEE, 2017: 30-33.
8 SHEN C , HUANG T , LIANG X , et al. Chinese knowledge base question answering by attention-based multi-granularity model[J]. Information, 2018, 9 (4): 1- 20.
9 YANG F, GAN L, LI A, et al. Combining deep learning with information retrieval for question answering[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 917-925.
10 XIE Z, ZENG Z, ZHOU G, et al. Knowledge base question answering based on deep learning models[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 300-311.
11 WANG L, ZHANG Y, LIU T. A deep learning approach for question answering over knowledge base[C]// Proc of the Natural Language Processing and Chinese Computing (NLPCC). Kunming, China: Springer, 2016: 885-892.
12 PICHUAN C A, HUIHSIN T B, DAN J A, et al. Discriminative reordering with chinese grammatical relations features[C]//Proc of the Third Workshop on Syntax and Structure in Statistical Translation. Pennsylvania, USA: Association for Computational Linguistics, 2009: 51-59.
13 DE MARNEFFE M C, DOZAT T, SILVEIRA N, et al. Universal Stanford dependencies: A cross-linguistic typology[C]// Proc of the International Conference on Language Resources and Evaluation (LREC). Reykjavik, Iceland: European Language Resources Association, 2014: 4585-4592.
14 YAHYA M, BERBERICH K, ELBASSUONI S, et al. Deep answers for naturally asked questions on the web of data[C]//Proc of the 21st Int Conf on World Wide Web(WWW). Lyon, France: ACM, 2012: 445-449.
15 YAHYA M, BERBERICH K, ELBASSUONI S, et al. Robust question answering over the web of linked data[C]//Proc of the 22nd ACM Int Conf on Information & Knowledge Management (CIKM). New York, USA: Association for Computing Machinery, 2013: 1107-1116.
16 YAHYA M, BERBERICH K, ELBASSUONI S, et al. Natural language questions for the web of data[C]//Proc of the 2012 Joint Conf on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: Association for Computational Linguistics, 2012: 379-390.
17 YAHYA M. Question answering and query processing for extended knowledge graphs[D]. Saarland, German: Saarland University, 2016.
18 PRADEL C, PEYET G, HAEMMERLÉ O, et al. SWIP at QALD-3: Results, criticisms and lesson learned[C]// Proc of the 3rd Open Challenge on Question Answering over Linked Data (QALD). Valencia, Spain: CEUR-WS, 2013: 1-13.
19 PRADEL C, HAEMMERLÉ O, HERNANDEZ N. Natural language query translation into SPARQL using patterns[C]//Proc of the Fourth Int Workshop on Consuming Linked Data. Sydney, Australia: CEUR-WS, 2013: 1-12.
20 PRADEL C, HAEMMERLÉ O, HERNANDEZ N. SWIP: a natural language to SPARQL interface implemented with SPARQL[C]//Proc of the Int Conf on Conceptual Structures. Işi, Romania: Springer, 2014: 260-274.
21 XU K, FENG Y, HUANG S, et al. Question answering via phrasal semantic parsing[C]//Proc of the Int Conf of the Cross-Language Evaluation Forum for European Languages. Toulouse, France: Springer, 2015: 414-426.
22 XU K, ZHANG S, FENG Y, et al. Answering natural language questions via phrasal semantic parsing[C]//Proc of the Natural Language Processing and Chinese Computing (NLPCC). Shenzhen, China: Springer, 2014: 333-344.
23 HAKIMOV S, TUNC H, AKIMALIEV M, et al. Semantic question answering system over linked data using relational patterns[C]// Proc of the Joint EDBT/ICDT 2013 Workshops. Genoa, Italy: ACM, 2013: 83-88.
24 ZOU L, HUANG R, WANG H, et al. Natural language question answering over RDF: a graph data driven approach[C]//Proc of the 2014 ACM SIGMOD Int Conf on Management of Data. Utah, USA: ACM, 2014: 313-324.
25 LIU J , LI W , LUO L , et al. Linked open data query based on natural language[J]. Chinese Journal of Electronics, 2017, 26 (2): 230- 235.
doi: 10.1049/cje.2016.11.003
26 FINKEL J R, GRENAGER T, MANNING C. Incorporating non-local information into information extraction systems by gibbs sampling[C]//Proc of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL). Michigan, USA: Association for Computational Linguistics, 2005: 363-370.
[1] Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Xue. Example analysis for landslide hazard remote monitoring at  the Pingzhuang west open-pit mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 116 -120 .
[2] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[3] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[4] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[5] LIU Wen-liang, ZHU Wei-hong, CHEN Di, ZHANG Hong-quan. Detection and tracking of moving targets using the morphology match in radar images[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 31 -36 .
[6] ZHANG Ying,LANG Yongmei,ZHAO Yuxiao,ZHANG Jianda,QIAO Peng,LI Shanping . Research on technique of aerobic granular sludge cultivationby seeding EGSB anaerobic granular sludge[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 56 -59 .
[7] SUN Dianzhu, ZHU Changzhi, LI Yanrui. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 84 -86 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92 -95 .
[9] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[10] WANG Pei,ZHANG Yanning,SHEN Jiazhen,LIU Juncheng, . Application of information measure and support vector machine in image edge detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 95 -99 .