Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 8-14.doi: 10.6040/j.issn.1672-3961.0.2019.062

• Machine Learning & Data Mining • Previous Articles     Next Articles

A Chirplet neural network for automatic target recognition

Yifei LI(),Zunhua GUO*()   

  1. School of Mechanical, Electrical & Information Engineering, Shandong University(Weihai), Weihai 264209, Shandong, China
  • Received:2019-02-14 Online:2020-06-20 Published:2020-06-16
  • Contact: Zunhua GUO E-mail:liyifei13@mail.sdu.edu.cn;gritty@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61401252)

Abstract:

Aiming at automatic target recognition of aircrafts, a Chirplet neural network for joint feature extraction and target classification was proposed to realize recognition of one-dimensional high resolution range profiles. Based on the multilayer feedforward neural network structure, the Chirplet-atom transform was used to replace the conventional excitation function in the input layer for feature extraction, and the hidden layer and output layer constituted the classifier of the network. The network weights and the parameters of Chirplet-atom node were simultaneously adjusted and optimized to achieve joint feature extraction and target classification. The simulation results of the four types of aircrafts showed that the Chirplet neural network method with the four-feature-parameters had higher recognition rate and anti-noise performance than the time-frequency transformation and Gabor atoms network.

Key words: automatic target recognition, high resolution range profile, Chirplet neural network

CLC Number: 

  • TP183

Fig.1

The structure of Chirplet neural network"

Fig.2

The normalized original range profiles of four targets"

Table 1

The recognition rate with the azimuth angle of 0°~45°"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 78.3 86.7 78.7 84.7 6.70
FFT 89.5 94.0 88.1 95.8 9.89
Gabor变换 91.7 95.8 89.6 96.3 7.54
Chirplet变换 92.3 96.9 90.6 96.7 8.59
小波神经网络 94.3 96.8 92.0 96.4 0.96
Gabor原子网络 95.1 99.1 96.7 97.6 1.22
Chirplet神经网络 97.7 99.8 97.0 98.1 2.13

Table 2

The recognition rate with the azimuth angle of 0°~90°"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 76.3 82.4 73.8 82.3 8.90
FFT 80.9 89.8 80.5 95.7 12.41
Gabor变换 82.3 88.3 81.6 96.0 9.39
Chirplet变换 82.5 92.6 83.2 95.5 12.86
小波神经网络 83.2 90.7 80.8 94.5 10.57
Gabor原子网络 85.3 93.8 85.2 96.7 23.38
Chirplet神经网络 87.2 95.3 86.5 96.8 29.50

Table 3

The recognition rate with the azimuth angle of 0°~180°"

识别方法 识别率/% 训练耗时/s
YF22 J6 F117 B2
距离像 72.8 80.9 71.0 80.2 13.00
FFT 74.8 83.0 74.2 96.6 21.22
Gabor变换 77.6 86.7 77.5 96.3 14.91
Chirplet变换 78.0 92.0 79.8 96.8 20.07
小波神经网络 79.3 89.8 81.9 94.8 32.34
Gabor原子网络 83.1 91.8 82.5 95.7 137.69
Chirplet神经网络 83.9 92.1 84.7 96.0 156.22

Fig.3

The recognition rates of the Chirplet neural network and Gabor-atoms network with different SNR"

Table 4

The recognition rate with the data of 0°~180° incondition of SNR=5 dB"

识别方法 识别率/%
YF22 J6 F117 B2
距离像 44.9 48.6 49.5 46.0
FFT 55.1 53.4 51.3 69.8
Gabor变换 51.6 52.2 48.0 67.4
Chirplet变换 59.8 51.4 54.1 73.4
小波神经网络 65.7 76.5 71.4 74.7
Gabor原子网络 72.8 74.5 70.1 76.8
Chirplet神经网络 75.5 77.3 74.2 75.1
1 LI H J , YANG S H . Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41 (3): 261- 268.
doi: 10.1109/8.233138
2 JACOBS S P , O'SULLIVAN J A . Automatic target recognition using sequences of high resolution radar range-profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2): 364- 381.
doi: 10.1109/7.845214
3 CHEN J , DU L , HE H , et al. Convolutional factor analysis model with application to radar automatic target recognition[J]. Pattern Recognition, 2019, 87, 140- 156.
doi: 10.1016/j.patcog.2018.10.014
4 郭尊华, 李达, 张伯彦. 雷达高距离分辨率一维像目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09
GUO Zunhua , LI Da , ZHANG Boyan . Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering & Electronics, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09
5 张贤达. 现代信号处理[M]. 2版 北京: 清华大学出版社, 2002.
6 GUO Z H , LI S H . One-dimensional frequency-domain features for aircraft recognition from radar range profiles[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46 (4): 1880- 1892.
7 DUIN R , PE , KALSKA E . The science of pattern recognition. Achievements and perspectives[J]. Studies in Computational Intelligence, 2007, 63, 221- 259.
8 徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38 (12): 2988- 2995.
XU Bin , CHEN Bo , LIU Hongwei , et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 2988- 2995.
9 PAN M , JIANG J , KONG Q , et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098
10 LUNDEN J, KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]//Proceedings of 2016 IEEE Radar Conference (RadarConf). Philadelphia, USA: IEEE, 2016: 1-6.
11 殷和义, 郭尊华. 一维卷积神经网络用于雷达高分辨率距离像识别[J]. 电讯技术, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002
YIN Heyi , GUO Zunhua . Radar HRRP target recognition with one-dimensional CNN[J]. Telecommunication Engineering, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002
12 SHAW A K , PAUL A S , WILLIAMS R . Eigen-template-based HRR-ATR with multi-look and time-recursion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (4): 2369- 2385.
doi: 10.1109/TAES.2013.6621822
13 FENG B , CHEN B , LIU H W . Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61, 379- 393.
doi: 10.1016/j.patcog.2016.08.012
14 LIU H , FENG B , CHEN B , et al. Radar high-resolution range profiles target recognition based on stable dictionary learning[J]. IET Radar, Sonar & Navigation, 2016, 10 (2): 228- 237.
15 ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475
16 LIU W B , WANG Z D , LIU X H , et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234, 11- 26.
doi: 10.1016/j.neucom.2016.12.038
17 ALEXANDRIDIS A K , ZAPRANIS A D . Wavelet neural networks: a practical guide[J]. Neural Networks, 2013, 42, 1- 27.
doi: 10.1016/j.neunet.2013.01.008
18 SHI Y , ZHANG X D . A Gabor atom network for signal classification with application in radar target recognition[J]. IEEE Transactions on Signal Processing, 2001, 49 (12): 2994- 3004.
doi: 10.1109/78.969508
19 ZHU F , ZHANG X D , HU Y F . Gabor filter approach to joint feature extraction and target recognition[J]. IEEE Transactions on Aerospace and Electronic systems, 2009, 45 (1): 17- 30.
doi: 10.1109/TAES.2009.4805260
20 MANN S, HAYKIN S. The chirplet transform: a generalization of Gabor's logon transform[C]//Proceedings Vision Interface'91. Alberta, Canada: University of Calgary, 1991: 205-212.
21 MANN S , HAYKIN S . Adaptive "chirplet" transform: an adaptive generalization of the wavelet transform[J]. Optical Engineering, 1992, 31 (6): 1243- 1256.
doi: 10.1117/12.57676
22 MANN S , HAYKIN S . The chirplet transform: physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43 (11): 2745- 2761.
doi: 10.1109/78.482123
23 YANG Y , PENG Z K , DONG X J , et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62 (11): 2751- 2764.
doi: 10.1109/TSP.2014.2314061
24 BULTAN A . A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1999, 47 (3): 731- 745.
doi: 10.1109/78.747779
25 朱明, 金炜东, 普运伟, 等. 基于Chirplet原子的雷达辐射源信号特征提取[J]. 红外与毫米波学报, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014
ZHU Ming , JIN Weidong , PU Yunwei , et al. Feature extraction of radar emitter signals based on gaussian chirplet atoms[J]. Journal of Infrared & Millimeter Waves, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014
[1] Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84.
[2] LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13.
[3] LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38.
[4] YIN Jian-chuan1,2, ZOU Zao-jian1,3, XU Feng1. An improved extreme learning machine based on Akaike criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 7-11.
[5] MEI Hong,WANG Yong,ZHAO Rong-qi . Study on inverse kinematics of a robot based on an ant colony-neural network algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Yong-hua,WANG An-ling,LIU Fu-ping . The reflected phase angle of low frequent inhomogeneous[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 22 -25 .
[2] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[3] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[4] WANG Bo,WANG Ning-sheng . Automatic generation and combinatory optimization of disassembly sequence for mechanical-electric assembly[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 52 -57 .
[5] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[6] QIN Tong, SUN Fengrong*, WANG Limei, WANG Qinghao, LI Xincai. 3D surface reconstruction using the shape based interpolation guided by maximal discs[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 1 -5 .
[7] SUN Guohua, WU Yaohua, LI Wei. The effect of excise tax control strategy on the supply chain system performance[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 63 -68 .
[8] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 92 -95 .
[9] WANG Pei,ZHANG Yanning,SHEN Jiazhen,LIU Juncheng, . Application of information measure and support vector machine in image edge detection[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 95 -99 .
[10] ZHANG Ai-juan. Synthesis of bone-like hydroxyapatite in simulated body fluid[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 86 -90 .