Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (3): 8-14.doi: 10.6040/j.issn.1672-3961.0.2019.062
• Machine Learning & Data Mining • Previous Articles Next Articles
CLC Number:
1 |
LI H J , YANG S H . Using range profiles as feature vectors to identify aerospace objects[J]. IEEE Transactions on Antennas and Propagation, 1993, 41 (3): 261- 268.
doi: 10.1109/8.233138 |
2 |
JACOBS S P , O'SULLIVAN J A . Automatic target recognition using sequences of high resolution radar range-profiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36 (2): 364- 381.
doi: 10.1109/7.845214 |
3 |
CHEN J , DU L , HE H , et al. Convolutional factor analysis model with application to radar automatic target recognition[J]. Pattern Recognition, 2019, 87, 140- 156.
doi: 10.1016/j.patcog.2018.10.014 |
4 |
郭尊华, 李达, 张伯彦. 雷达高距离分辨率一维像目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09 |
GUO Zunhua , LI Da , ZHANG Boyan . Survey of radar target recognition using one-dimensional high range resolution profiles[J]. Systems Engineering & Electronics, 2013, 35 (1): 53- 60.
doi: 10.3969/j.issn.1001-506X.2013.01.09 |
|
5 | 张贤达. 现代信号处理[M]. 2版 北京: 清华大学出版社, 2002. |
6 | GUO Z H , LI S H . One-dimensional frequency-domain features for aircraft recognition from radar range profiles[J]. IEEE Transactions on Aerospace & Electronic Systems, 2010, 46 (4): 1880- 1892. |
7 | DUIN R , PE , KALSKA E . The science of pattern recognition. Achievements and perspectives[J]. Studies in Computational Intelligence, 2007, 63, 221- 259. |
8 | 徐彬, 陈渤, 刘宏伟, 等. 基于注意循环神经网络模型的雷达高分辨率距离像目标识别[J]. 电子与信息学报, 2016, 38 (12): 2988- 2995. |
XU Bin , CHEN Bo , LIU Hongwei , et al. Attention-based recurrent neural network model for radar high-resolution range profile target recognition[J]. Journal of Electronics & Information Technology, 2016, 38 (12): 2988- 2995. | |
9 |
PAN M , JIANG J , KONG Q , et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (9): 1609- 1613.
doi: 10.1109/LGRS.2017.2726098 |
10 | LUNDEN J, KOIVUNEN V. Deep learning for HRRP-based target recognition in multistatic radar systems[C]//Proceedings of 2016 IEEE Radar Conference (RadarConf). Philadelphia, USA: IEEE, 2016: 1-6. |
11 |
殷和义, 郭尊华. 一维卷积神经网络用于雷达高分辨率距离像识别[J]. 电讯技术, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002 |
YIN Heyi , GUO Zunhua . Radar HRRP target recognition with one-dimensional CNN[J]. Telecommunication Engineering, 2018, 58 (10): 1121- 1126.
doi: 10.3969/j.issn.1001-893x.2018.10.002 |
|
12 |
SHAW A K , PAUL A S , WILLIAMS R . Eigen-template-based HRR-ATR with multi-look and time-recursion[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (4): 2369- 2385.
doi: 10.1109/TAES.2013.6621822 |
13 |
FENG B , CHEN B , LIU H W . Radar HRRP target recognition with deep networks[J]. Pattern Recognition, 2017, 61, 379- 393.
doi: 10.1016/j.patcog.2016.08.012 |
14 | LIU H , FENG B , CHEN B , et al. Radar high-resolution range profiles target recognition based on stable dictionary learning[J]. IET Radar, Sonar & Navigation, 2016, 10 (2): 228- 237. |
15 |
ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475 |
16 |
LIU W B , WANG Z D , LIU X H , et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234, 11- 26.
doi: 10.1016/j.neucom.2016.12.038 |
17 |
ALEXANDRIDIS A K , ZAPRANIS A D . Wavelet neural networks: a practical guide[J]. Neural Networks, 2013, 42, 1- 27.
doi: 10.1016/j.neunet.2013.01.008 |
18 |
SHI Y , ZHANG X D . A Gabor atom network for signal classification with application in radar target recognition[J]. IEEE Transactions on Signal Processing, 2001, 49 (12): 2994- 3004.
doi: 10.1109/78.969508 |
19 |
ZHU F , ZHANG X D , HU Y F . Gabor filter approach to joint feature extraction and target recognition[J]. IEEE Transactions on Aerospace and Electronic systems, 2009, 45 (1): 17- 30.
doi: 10.1109/TAES.2009.4805260 |
20 | MANN S, HAYKIN S. The chirplet transform: a generalization of Gabor's logon transform[C]//Proceedings Vision Interface'91. Alberta, Canada: University of Calgary, 1991: 205-212. |
21 |
MANN S , HAYKIN S . Adaptive "chirplet" transform: an adaptive generalization of the wavelet transform[J]. Optical Engineering, 1992, 31 (6): 1243- 1256.
doi: 10.1117/12.57676 |
22 |
MANN S , HAYKIN S . The chirplet transform: physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43 (11): 2745- 2761.
doi: 10.1109/78.482123 |
23 |
YANG Y , PENG Z K , DONG X J , et al. General parameterized time-frequency transform[J]. IEEE Transactions on Signal Processing, 2014, 62 (11): 2751- 2764.
doi: 10.1109/TSP.2014.2314061 |
24 |
BULTAN A . A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing, 1999, 47 (3): 731- 745.
doi: 10.1109/78.747779 |
25 |
朱明, 金炜东, 普运伟, 等. 基于Chirplet原子的雷达辐射源信号特征提取[J]. 红外与毫米波学报, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014 |
ZHU Ming , JIN Weidong , PU Yunwei , et al. Feature extraction of radar emitter signals based on gaussian chirplet atoms[J]. Journal of Infrared & Millimeter Waves, 2007, 26 (4): 302- 306.
doi: 10.3321/j.issn:1001-9014.2007.04.014 |
[1] | Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84. |
[2] | LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13. |
[3] | LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38. |
[4] | YIN Jian-chuan1,2, ZOU Zao-jian1,3, XU Feng1. An improved extreme learning machine based on Akaike criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 7-11. |
[5] | MEI Hong,WANG Yong,ZHAO Rong-qi . Study on inverse kinematics of a robot based on an ant colony-neural network algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(5): 72-76 . |
|