Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 27-33.doi: 10.6040/j.issn.1672-3961.0.2019.412

• Machine Learning & Data Mining • Previous Articles     Next Articles

Vehicle classification and tracking for complex scenes based on improved YOLOv3

Shiqi SONG(),Yan PIAO*(),Zexin JIANG   

  1. College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2019-07-22 Online:2020-04-20 Published:2020-04-16
  • Contact: Yan PIAO E-mail:songsq_email@163.com;piaoyan@cust.edu.cn
  • Supported by:
    国家自然科学基金资助项目(60977011);吉林省科技发展项目(20180623039TC)

Abstract:

Aiming at the influence of weather conditions and mutual occlusion of vehicles on vehicle classification and tracking accuracy and stability, a hybrid model based on improved YOLOv3 and matching tracking was proposed. The improved YOLOv3 network refered to DenseNet′s design idea, replaced the residual layer in the network with a dense convolution block and changed the design structure of the network. The fused features of dense convolution blocks and convolution layers were classified by using Softmax classifier. According to the detection result of single frame image, the target matching function was designed to solve the vehicle tracking problem in video sequence. In the KITTI dataset test, the improved algorithm achieved an average precision of 93.01%, the number of frames per second reached 48.98, and the average recognition rate in the self-built dataset was 95.79%. The experimental results showed that the proposed method could effectively distinguish the types of vehicles in complex scenes with higher accuracy. At the same time, the method had higher accuracy and robustness in vehicle tracking.

Key words: image processing, vehicle classification, convolutional neural network, YOLOv3, match tracking

CLC Number: 

  • TP391

Fig.1

Improved YOLOv3 network structure"

Fig.2

Dense block structure diagram"

Fig.3

Dense convolutional network feature extraction structure"

Table 1

Different methods test results in public data sets"

方法 平均准确率均值/% 传输速率/(帧·s-1)
R-CNN 52.76 0.38
Fast R-CNN 61.53 0.54
SSD 80.01 51.26
YOLO 56.78 67.43
YOLOv3 90.76 48.99
本文 93.01 48.98

Fig.4

PR curves of different methods in public data sets"

Fig.5

Vehicle classification results in different scenes"

Table 2

Different scenes classification results  %"

方法 场景 目标分类率 误检率 漏检率
Fast R-CNN 白天 77.78 11.56 10.66
YOLO 白天 73.26 19.75 6.99
YOLOv3 白天 92.41 6.46 1.13
本文 白天 97.03 2.91 0.06
Fast R-CNN 夜晚 71.67 13.15 15.18
YOLO 夜晚 68.50 17.28 14.22
YOLOv3 夜晚 87.98 7.63 4.39
文本 夜晚 94.76 4.09 1.15
Fast R-CNN 雨天 77.54 11.98 10.48
YOLO 雨天 72.33 19.47 8.20
YOLOv3 雨天 91.89 6.78 1.33
本文 雨天 96.73 2.03 1.24
Fast R-CNN 雾天 75.02 12.83 12.15
YOLO 雾天 71.32 16.84 11.84
YOLOv3 雾天 89.57 7.55 2.88
本文 雾天 94.71 3.69 1.60
Fast R-CNN 雪天 75.54 11.98 12.48
YOLO 雪天 70.33 18.47 11.20
YOLOv3 雪天 90.89 7.78 1.33
本文 雪天 95.73 3.03 1.24

Fig.6

Vehicle tracking results in different scenes"

Table 3

Video sequence tracking results  %"

方法 成功率 精确率
CSK 54.5 39.8
TLD 55.8 43.7
ALSA 53.2 42.4
本文 55.5 45.6
1 赵娜, 袁家斌, 徐晗. 智能交通系统综述[J]. 计算机科学, 2014, 41 (11): 7- 11.
doi: 10.11896/j.issn.1002-137X.2014.11.002
ZHAO Na , YUAN Jiabin , XU Han . Overview of intelligent transportation systems[J]. Computer Science, 2014, 41 (11): 7- 11.
doi: 10.11896/j.issn.1002-137X.2014.11.002
2 DUANMU F , MA Z , WANG Y . Fast mode and partition decision using machine learning for intra-frame coding in HEVC screen content coding extension[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6 (4): 517- 531.
doi: 10.1109/JETCAS.2016.2597698
3 SARIPAN K, NUTHONG C. Tree-based vehicle classification system[C]//2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Phuket, Thailand: IEEE, 2017: 439-442.
4 PUROHIT N, ISRANI D.Vehicle classification and surveillance using machine learning technique[C]//2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). Bengaluru, India: IEEE, 2017: 910-914.
5 KAFAI M , BHANU B . Dynamic Bayesian networks for vehicle classification in video[J]. IEEE Transactions on Industrial Informatics, 2012, 8 (1): 100- 109.
doi: 10.1109/TII.2011.2173203
6 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Columbus, USA: IEEE, 2014: 580-587.
7 REN S, HE K, Girshick R, et al. Faster R-cnn: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems. Quebec, Canada: Curran Associates Inc., 2015: 91-99.
8 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, USA: IEEE, 2016: 779-788.
9 LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Amsterdam, Netherlands: Springer, 2016: 21-37.
10 REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL].(2018-04-01) [2019-07-22]. https://www.bibsonomy.org/bibtex/bbdec3df168e9809-d9e61423d4b4e062.arXiv:1804.02767v1, 2018.
11 HUANG G, LIU Z, VAN Der Maaten L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii, USA: IEEE, 2017: 4700-4708.
12 LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Hawaii, USA: IEEE, 2017: 2117-2125.
13 GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Rhode Island, USA: IEEE, 2012: 3354-3361.
14 KALAL Z, MATAS J, MIKOLAJCZYK K. Pn learning: Bootstrapping binary classifiers by structural constraints[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). California, USA: IEEE, 2010: 49-56.
15 WANG N, YEUNG D Y. Learning a deep compact image representation for visual tracking[C]//Advances in Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates Inc, 2013: 809-817.
16 ZHONG W, LU H, YANG M H. Robust object tracking via sparsity-based collaborative model[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Rhode Island, USA: IEEE, 2012: 1838-1845.
[1] Yuenan ZHAO,Guiyou CHEN,Chen SUN,Ning LU,Liwei LIAO. Risk assessment method based on spatial hidden danger distribution and motion intention analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 28-34.
[2] Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79.
[3] Mengmeng LIANG,Tao ZHOU,Yong XIA,Feifei ZHANG,Jian YANG. Lung tumor images recognition based on PSO-ConvK convolutional neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 77-84.
[4] Pu ZHANG,Chang LIU,Yong WANG. Suggestion sentence classification model based on feature fusion and ensemble learning [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 47-54.
[5] ZHANG Xianhong, ZHANG Chunrui. Image enhancement algorithm based on six dimensional feedforward neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 10-19.
[6] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[7] XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39.
[8] ZHAO Yanxia, WANG Xizhao. Multipurpose zero watermarking algorithm for color image based on SVD and DCNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 25-33.
[9] LI Yuxin, PU Yuanyuan, XU Dan, QIAN Wenhua, LIU Hejuan. Image aesthetic quality evaluation based on embedded fine-tune deep CNN [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 60-66.
[10] MENG Lingheng, DING Shifei. Depth perceptual model based on the single image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 37-43.
[11] QIU Xiaoxin1,2, ZHANG Wenqiang1,2*, QIN Jinxian1,2, DU Zhengyang1,2, ZHANG Defeng1,2. Multi-target real-time tracking method under harsh environment [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 21-27.
[12] PAN Sheng-min1,2, ZHONG Yi1*, WANG Jian-hua2. Edge detection of extruded billet based on improved Canny operator [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 19-23.
[13] XU Shan-shan, LIU Ying-an*, XU Sheng. Wood defects recognition based on the convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 23-28.
[14] WANG Yu-ying1, ZHANG Xi-zhong2, YANG Sen2. Morphological color image processing based on new ranking and
soft multi-structural elements
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 18-22.
[15] LI Yue-Yang, WANG Shi-Tong. An impulse noise filtering algorithm based on a robust neuro-fuzzy network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Rui, LI Hongwei, TIAN Jing. The relationship between the number of magnetic poles and the bearing capacity of radial magnetic bearing[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 81 -85 .
[2] WANG Shan,LI Tian-ze . A new method for the control of a wound-rotor induction machine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 86 -89 .
[3] SUN Yuan-Yuan, XU Yan-Liang, TAO Zhi-Ning. Analysis and calculation of the braking force for a side magnetism brake single phase induction motor[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 120 -123 .
[4] SONG Qing,LI Xiao-lei,ZHANG Cheng-jin . Optimization of a postal express mail network based on bottleneck analysis[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 29 -33 .
[5] SUN Xiang-yong . A note on total colorings of planar graphs without 4cycle and adjacent 3cycle[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 118 -121 .
[6] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[7] BEI Guang-xia,LOU Pei-huang,YE Wen-hua,WANG Xiao-mei . On-machine inspecting cylindricity error of precision machining[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(5): 65 -67 .
[8] HU Gang,FENG Xiang-Qian,CHEN Xin,CAO Li . A signal simulation method based on a wavelet neural network with an interval-accuracy of time-frequency[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 96 -100 .
[9] DENG Xiu-cheng,SHEN Yan-jun,FANG Sheng-le .

An approach to design the finite-time observer for MIMO-linear systems

[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 17 -21 .
[10] CUI Xin-zhuang,YAO Zhan-yong,SHANG Qing-sen . The application of dynamic compaction to the reconstruction of old road to expressway and its generalization[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 53 -56 .