Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 17-26.doi: 10.6040/j.issn.1672-3961.0.2019.418

• Machine Learning & Data Mining • Previous Articles     Next Articles

Visual tracking algorithm based on verifying networks

Ningning CHEN(),Jianwei ZHAO*(),Zhenghua ZHOU   

  1. School of Science, China Jiliang University, Hangzhou 310018, Zhejiang, China
  • Received:2019-03-28 Online:2020-04-20 Published:2020-04-16
  • Contact: Jianwei ZHAO E-mail:853078476@qq.com;zhaojw@amss.ac.cn
  • Supported by:
    浙江省自然科学基金资助项目(LY18F020018);浙江省自然科学基金资助项目(LSY19F020001);国家自然科学基金资助项目(61571410)

Abstract:

In order to solve the problem that the existing deep learning based visual tracking algorithms paid attention to the deep features but neglected the shallow features, and the tracking network did not evaluate the tracking results, a visual tracking algorithm based on verifying network was proposed. The proposed algorithm consisted of tracking network and verifying network. In the tracking network, considering the fusion of deep features and shallow edge features, a multi-input residual network was designed to learn the relationship between the target and its corresponding Gaussian response map to obtain the position information of the target. In the verifying network, a shallow chain discriminate network was designed, and this paper compared the tracking results of tracking network and verifying network, and updated the tracking network according to the compared results. Therefore, the proposed algorithm not only took the deep features into account, but also avoided the loss of detail information. Furthermore, the tracking results were evaluated to prevent the continuation of error messages in the update. The experimental results illustrated that the proposed tracking algorithm achieved better tracking results than some other existing tracking methods.

Key words: visual tracking, deep neural network, verifying network, shallow feature, deep feature

CLC Number: 

  • TP391

Fig.1

Overview of the proposed tracker"

Fig.2

Structure of the tracking network MRNet"

Fig.3

Structure of the verifying network PCNet"

Table 1

The effect of ω on distance-precision and overlap-success"

ω 成功率 距离精度
0 0.668 0.830
1 0.669 0.831
2 0.686 0.853
3 0.681 0.847
4 0.660 0.832

Fig.4

Distance precision plot and overlap success plot of the top 14 trackers on OTB-2013 dataset."

Table 2

The distance-precision of top 5 trackers on ever attribute of OTB-2013 dataset"

排名 IV SV OCC DEF MB FM IPR OPR OV BC LR
1 OUR
(0.828)
OUR
(0.854)
OUR
(0.835)
OUR
(0.851)
OUR
(0.795)
OUR
(0.787)
OUR
(0.831)
OUR
(0.844)
OUR
(0.798)
OUR
(0.843)
OUR
(0.822)
2 CNN-
SVM
(0.716)
DeepS
RDCF
(0.750)
DeepS
RDCF
(0.778)
DLS-
SVM
(0.807)
DeepS
RDCF
(0.724)
DeepS
RDCF
(0.705)
CNN-
SVM
(0.754)
DeepS
RDCF
(0.770)
DCFNet
(0.767)
RPT
(0.753)
SiamFC
(0.669)
3 RPT
(0.713)
CNN-
SVM
(0.744)
DCFNet
(0.767)
ACFN-
selNet
(0.805)
RPT
(0.706)
MEEM
(0.680)
STAPL
E_CA
(0.742)
ACFN-
selNet
(0.761)
ACFN-
selNet
(0.715)
DLS
SVM
(0.730)
CNN-
SVM
(0.612)
4 STAPL
E_CA
(0.710)
SiamFC
(0.730)
SAMF
(0.765)
CNN-
SVM
(0.797)
SRDCF
(0.701)
RPT
(0.673)
DeepS
RDCF
(0.730)
DLS SVM
(0.758)
DeepS
RDCF
(0.713)
SRDCF
(0.721)
DCFNet
(0.590)
5 DeepS
RDCF
(0.703)
DCFNet
(0.726)
SRDCF
(0.760)
STAPL
E_CA
(0.767)
DLS SVM
(0.686)
SiamFC
(0.671)
DLS SVM
(0.725)
CNN-
SVM
(0.756)
SiamFC
(0.708)
DeepS
RDCF
(0.720)
DLS
SVM
(0.544)

Table 3

The overlap-success of top 5 trackers on ever attribute of OTB-2013 dataset"

排名 IV SV OCC DEF MB FM IPR OPR OV BC LR
1 OUR
(0.673)
OUR
(0.670)
OUR
(0.678)
OUR
(0.688)
OUR
(0.664)
OUR
(0.649)
OUR
(0.656)
OUR
(0.674)
OUR
(0.708)
OUR
(0.676)
OUR
(0.662)
2 DCFNet
(0.596)
DeepS
RDCF
(0.628)
DCFNet
(0.645)
CNN-
SVM
(0.640)
DeepS
RDCF
(0.625)
DeepS
RDCF
(0.608)
STAPLE_
CA
(0.601)
DeepS
RDCF
(0.630)
DCFNet
(0.690)
RPT
(0.614)
SiamFC
(0.566)
3 STAPL
E_CA
(0.596)
DCFNet
(0.619)
DeepS
RDCF
(0.628)
SRDCF
(0.635)
SRDCF
(0.601)
SRDCF
(0.569)
DeepS
RDCF
(0.596)
DCFNet
(0.612)
SiamFC
(0.635)
CNN-
SVM
(0.593)
DCFNet
(0.496)
4 DeepS
RDCF
(0.589)
SiamFC
(0.603)
SRDCF
(0.627)
STAPL
E_CA
(0.632)
DLS SVM
(0.578)
STAPL
E_CA
(0.566)
SiamFC
(0.582)
SRDCF
(0.599)
DeepS
RDCF
(0.619)
DLS SVM
(0.592)
CNN-
SVM
(0.461)
5 SRDCF
(0.576)
SRDCF
(0.587)
SAMF
(0.612)
DLS SVM
(0.632)
RPT
(0.576)
RPT
(0.561)
STAPLE
(0.580)
STAPL
E_CA
(0.594)
ACFN-
selNet
(0.609)
DeepS
RDCF
(0.591)
STAPLE
(0.438)

Table 4

The experimental results of 15 trackers on overlap-success and distance-precision based on VOT2016 database"

追踪器 距离精度 成功率
综合 CM IC MC OCC SC 综合 CM IC MC OCC SC
OUR 0.668 0.663 0.663 0.663 0.663 0.668 0.502 0.500 0.500 0.500 0.492 0.502
DeepSTRCF 0.595 0.589 0.589 0.589 0.585 0.595 0.460 0.454 0.454 0.454 0.447 0.460
CFWCR 0.586 0.579 0.579 0.579 0.576 0.586 0.453 0.448 0.448 0.448 0.444 0.453
STRCF 0.548 0.541 0.541 0.541 0.538 0.548 0.418 0.412 0.412 0.412 0.405 0.418
CREST 0.526 0.519 0.519 0.519 0.519 0.526 0.423 0.418 0.418 0.418 0.412 0.423
BACF 0.464 0.456 0.456 0.456 0.448 0.464 0.366 0.360 0.360 0.360 0.351 0.366
DCFNet 0.454 0.445 0.445 0.445 0.437 0.454 0.367 0.360 0.360 0.360 0.351 0.367
MRNet 0.448 0.440 0.440 0.440 0.437 0.448 0.360 0.354 0.354 0.354 0.346 0.360
SAMF 0.427 0.423 0.423 0.423 0.407 0.427 0.337 0.335 0.335 0.335 0.322 0.337
SRDCF 0.419 0.410 0.410 0.410 0.402 0.419 0.325 0.317 0.317 0.317 0.311 0.325
KCF 0.367 0.358 0.358 0.358 0.355 0.367 0.276 0.270 0.270 0.270 0.265 0.276
CSK 0.318 0.308 0.308 0.308 0.318 0.318 0.241 0.233 0.233 0.233 0.238 0.241
DSST 0.294 0.283 0.283 0.283 0.305 0.294 0.219 0.210 0.210 0.210 0.227 0.219
DFT 0.260 0.254 0.254 0.254 0.264 0.260 0.213 0.208 0.208 0.208 0.212 0.213
CT 0.233 0.234 0.234 0.234 0.239 0.233 0.195 0.197 0.197 0.197 0.195 0.195

Fig.5

Tracking results of our method with other 6 methods on video sequences"

1 ISARD Michael , BLAKE Andrew . Condensation-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29 (1): 5- 28.
2 YANG Changjiang, DURAISWAMI Ramani, DAVIS Larry. Fast multiple object tracking via a hierarchical particle filter[C]// Proceedings of the IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005: 212-219.
3 KHAN Zia, BALCH Tucker, DELLAERT Frank. A rao-blackwellized particle filter for eigen tracking [C]// Proceedings of the Computer Vision and Pattern Recognition. Washington, American: IEEE, 2004: 980-986.
4 ZHOU Shaohua Kevin , CHELLAPPA Rama , MOGHAD-DAM Baback . Visual tracking and recognition using appearance-adaptive models in particle filters[J]. IEEE Transactions on Image Processing, 2004, 13 (11): 1491- 1506.
doi: 10.1109/TIP.2004.836152
5 PEREZ P, HUE C, VERMAAK J, et al. Color-based probabilistic tracking[C] //Proceedings of the European Conference on Computer Vision. Copenhagen, Denmark: Springer, 2002: 661-675.
6 BOLME David S, BEVERRIDGE J R, DRAPER Bruce A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the Computer Vision and Pattern Recognition. San Francisco, American: IEEE, 2010: 2544-2550.
7 DANELLJAN Martin , HAGER Gustav , KHAN Fahad Shahbaz , et al. Accurate scale estimation for robust visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (8): 1561- 1575.
doi: 10.1109/TPAMI.2016.2609928
8 HENRIQUES Joao F , CASEIRO Rui , MARTINS Pedro , et al. High speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390
9 DANELLJAN Martin, HAGER Gustav, KHAN Fahad Shahbaz, et al. Learning spatially regularized correlation filters for visual tracking[C]//Proceedings of the International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 4310-4318.
10 YANG Li, ZHU Jianke. A scale adaptive kernel correlation filter tracker with feature Integration[C]// Proceedings of European Conference on Computer Vision Workshops. Zurich, Switzerland: Springer, 2014: 254-265.
11 HENRIQUES Joao F, CASEIRO Rui, MARTINS Pedro, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C] //Proceedings of the European Conference on Computer Vision. Florence, Italy: Springer, 2012: 702-715.
12 GALOOGAHI Hamed Kiani, FAGG Ashton, LUCEY Simon. Learning background-aware correlation filters for visual tracking[C]// Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 1144-1152.
13 HONG Zhibin, CHEN Zhe, WANG Chaohui, et al. Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking[C]// Proceedings of the Computer Vision and Pattern Recognition. Boston, American: IEEE, 2015: 749-758.
14 HONG Seunghoon, YOU Tackgeun, KWAK Suha, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C] // Proceedings of International Conference on Machine Learning. Lille, France: IEEE, 2015: 597-606.
15 WANG Lijun, OUYANG Wangli, WANG Xiaogang, et al. Visual tracking with fully convolutional networks[C]//Proceedings of the International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 3119-3127.
16 TAO Ran, GAVVES Efstratios, SMEULDERS Arnold W M. Siamese instance search for tracking[C]// Proceedings of the Computer Vision and Pattern Recognition. Las Vegas, American: IEEE, 2016: 1420-1429.
17 WANG Qiang, GAO Jin, XING Junliang, et al. DCFNet: discriminant correlation filters network for visual tracking [EB/OL]. https://arxiv.org/abs/1704.04057v1.
18 BERTINETTO Luca, VALMADRE Jack, HENRIQUES Joao F, et al. Fully convolutional siamese networks for object tracking[C]// Proceedings of the European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016: 850-865.
19 JIANG Chenru , XIAO Jimin , XIE Yanchun , et al. Siamese network ensemble for visual tracking[J]. Neurocomputing, 2018, 275, 2892- 2903.
doi: 10.1016/j.neucom.2017.10.043
20 DANELLJAN Martin, HAGER Gustav, KHAN Fahad Shahbaz. Convolutional features for correlation filter based visual tracking[C]//Proceedings of the International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 621-629.
21 SIMONYAN Karen, ZISSERMAN Andrew. Very deep convolutional networks for large-scale image recognition [EB/OL]. https://arxiv.org/abs/1409.1556.
22 WU Yi, LIM Jongwoo, YANG Ming-Hsuan. Online object tracking: a benchmark[C] // Proceedings of the Computer Vision and Pattern Recognition. Portland, American: IEEE, 2013: 2411-2418.
23 KRISTAN Matej, LEONARDIS Ales, MATAS J Felsberg, et al. The visual object tracking vot2016 challenge results[C]// In Proceedings of European Conference on Computer Vision Workshops. Washington, American: IEEE, 2016: 777-823.
24 VEDALDI Andrea, LENC Karel. Matconvnet: convolutional neural networks for matlab[C]//Proceedings of the ACM International Conference on Multimedia. New York, American: ACM, 2015: 689-692.
25 NING Jifeng, YANG Jimei, JIANG Shaojie, et al. Object tracking via dual linear structured SVM and explicit feature map [C] //Proceedings of the Computer Vision and Pattern Recognition. Las Vegas, American: IEEE, 2016: 4266-4274.
26 CHOI Jongwon, CHANG Hyung-Jin, YUN Sangdoo, et al. Attentional correlation filter network for adaptive visual tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, American: IEEE, 2017: 4828-4837.
27 ZHANG Jianming, MA Shugao, SCLAROFF Stan. MEEM: robust tracking via multiple experts using entropy minimization[C]// Proceedings of the European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014: 188-203.
28 LI Yang, ZHU Jianke, HOI Steven CH. Reliable patch trackers: robust visual tracking by exploiting reliable patches[C]//Proceedings of the Computer Vision and Pattern Recognition. Boston, American: IEEE, 2015: 353-361.
29 LAURA Sevilla-Lara, ERIK Learned-Miller. Distribution fields for tracking[C]// IEEE Conference on Computer Vision and Pattern Recognition. Providence, American: IEEE, 2012: 1910-1917.
30 ZHANG Kaihua, ZHANG Lei, YANG Ming-Hsuan. Real-time compressive tracking[C] // Proceedings of the European Conference on Computer Vision. Florence, Italy: Springer, 2012: 866-879.
31 BERTINETTO Luca, VALMADRE Jack, GOLODETZ Stuart, et al. Staple: complementary learners for real-time tracking[C]// Proceedings of the Computer Vision and Pattern Recognition. Las Vegas, American: IEEE, 2016: 1401-1409.
32 MUELLER Matthias, SMITH Neil, GHANEM Bernard. Context-aware correlation filter tracking[C]// Procee-dings of the Computer Vision and Pattern Recognition. Honolulu, American: IEEE, 2017: 1396-1404.
33 HE Zhiqun, FAN Yingruo, ZHUANG Junfei, et al. Correlation filters with weighted convolution responses[C]// Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 1992-2000.
34 LI Feng, CHENG Tian, ZUO Wangmeng, et al. Learning spatial-tem poral regularized correlation filters for visual tracking[C] // Proceedings of the Computer Vision and Pattern Recognition. Salt Lake City, American: IEEE, 2018: 4904-4913.
35 SONG Yibing, MA Chao, GONG Lijun, et al. CREST: convolutional residual learning for visual tracking [C]// Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2555-2564.
[1] CHEN Yanping, FENG Li, QIN Yongbin, HUANG Ruizhang. A syntactic element recognition method based on deep neural network [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 44-49.
[2] Dongdong SHEN,Fengyu ZHOU,Mengyuan LI,Shuqian WANG,Renhe GUO. Indoor wireless positioning based on ensemble deep neural network [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 95-102.
[3] TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56.
[4] LIU Fan, CHEN Zehua, CHAI Jing. A new multi-focus image fusion method based on deep neural network model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 7-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Kan . Empolder and implement of the embedded weld control system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 37 -41 .
[2] SHI Lai-shun,WAN Zhong-yi . Synthesis and performance evaluation of a novel betaine-type asphalt emulsifier[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 112 -115 .
[3] YU Jia yuan1, TIAN Jin ting1, ZHU Qiang zhong2. Computational intelligence and its application in psychology[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 1 -5 .
[4] LIU Zhongguo,ZHANG Xiaojing,LIU Boqiang,LIU Changchun, . The development of ultrasonic characterization of the biological tissue elasticity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 34 -38 .
[5] GONG Yi-guang,GONG Yi-guang,BAI Jun-jie,WANG Ning-sheng . An DNC system based on SCA specification and its application[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 5 -8 .
[6] WANG Kai,SUN Feng-zhong,ZHAO Yuan-bin,GAO Ming,GAO Shan . Mathematical model and numerical simulation of the air inlet flowfield of a natural-draft cooling tower[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 13 -17 .
[7] ZHANG Ning, LI Shu-Cai, LI Ming-Tian, YANG Lei. Development of a new rock similar material[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 149 -154 .
[8] JIA Xiu-qin,LIU Yun-gang . Observer design for a class of more general Lipschitz nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(2): 113 -120 .
[9] QIU Dao-hong1, ZHANG Le-wen1, CUI Wei2, SU Mao-xin1, SUN Huai-feng1. A genetic neural network model based on a trend examination method and engineering application[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(3): 113 -118 .
[10] HE Wenjie, HE Weichao, SUN Quansen. Parallelization and GPU acceleration of compressive sensing reconstruction algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 110 -114 .