Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 34-43.doi: 10.6040/j.issn.1672-3961.0.2019.294

• Machine Learning & Data Mining • Previous Articles     Next Articles

Improved bird swarm algorithms based on mixed decision making

Wei YAN(),Damin ZHANG*(),Huijuan ZHANG,Ziyun XI,Zhongyun CHEN   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guiyang, China
  • Received:2019-06-10 Online:2020-04-20 Published:2020-04-16
  • Contact: Damin ZHANG E-mail:349552812@qq.com;1203813362@qq.com
  • Supported by:
    贵州省自然科学基金资助项目(黔科合基础[2017]1047号)

Abstract:

Aiming at the problems of low precision and easy to fall into local optimum in solving complex function problems of traditional bird swarm algorithm (BSA), an improved bird swarm algorithm based on mixed decision-making was proposed while retaining the simplicity of BSA. The centroid opposition-based learning was used to initialize the bird population and maintain the better spatial solution distribution of the bird flock. In order to balance the global search ability and local detection ability of the algorithm in the optimization process, the period time of the birds flying to another area was dynamically adjusted. The weighting strategy of adaptive cosine function and weighted averaging idea were introduced to improve the producer's foraging formula, so as to increase the ability of the algorithm to get rid of difficulties after falling into local optimum. The performance of improved bird swarm algorithm based on mixed decision-making, bird swarm algorithm and particle swarm optimization were compared on the basis of nine test functions. The results showed that the accuracy and speed of the improved algorithm were greatly improved in the test of single-peak and multi-peak functions.

Key words: bird swarm algorithm, centroid opposition-based learning, the weighting strategy of adaptive cosine function, mixed decision making, the centroid opposition-based learning

CLC Number: 

  • TP391

Fig.1

Function curve of S-shaped"

Fig.2

Function curve of transformed S-shaped"

Table 1

Experimental setting parameters"

算法 参数设置
IBSA c1=c2=1.5, a1=a2=1, FQ=[4, 10], ω=[4, 9], a=12
BSA c1=c2=1.5, a1=a2=1, FQ=10
PSO ω=0.729, c1=c2=1.494 45,

Table 2

Basic information on standard test functions"

函数名 表达式 范围 最优值
Schwefel 1.2 $F_{1}(x)=\sum\limits_{i=1}^{n}\left(\sum\limits_{j=1}^{i} x_{j}^{2}\right)^{2}$ [-10, 10] 0
Tablet $F_{2}(x)=10^{6} x_{1}^{2}+\sum\limits_{i=2}^{n} x_{i}^{2}$ [-100, 100] 0
Schwefel 2.22 $F_{3}(x)=\sum\limits_{i=1}^{n}\left|x_{i}\right|+\prod\limits_{i=1}^{n}\left|x_{i}\right|$ [-10, 10] 0
Sphere $F_{4}(x)=\sum\limits_{i=1}^{n} x_{i}^{2}$ [-100, 100] 0
Alpine $F_{5}(x)=\sum\limits_{i=1}^{n}\left|x_{i} \sin \left(x_{i}\right)+0.1 x_{i}\right|$ [-10, 10] 0
Rastrigin $F_{6}(x)=\sum\limits_{i=1}^{n}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)$ [-5.12, 5.12] 0
Griewank $F_{7}(x)=\sum\limits_{i=1}^{n} \frac{x_{i}^{2}}{4000}-\prod\limits_{i=1}^{n} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$ [-600, 600] 0
Powell $F_{8}(x)=\sum\limits_{i=1}^{n / 4}\left[\left(x_{4 i-3}+10 x_{4 i-2}\right)^{2}+5\left(x_{4 i-1}-x_{4 i}\right)^{2}+\left(x_{4 i-2}-2 x_{4 i-1}\right)^{4}+10\left(x_{4 i-3}-x_{4 i}\right)^{4}\right]$ [-4, 5] 0
Zakharov $F_{9}(x)=\sum\limits_{i=1}^{n} x_{i}^{2}+\left(\sum\limits_{i=1}^{n} 0.5 i x_{i}\right)^{2}+\left(\sum\limits_{i=1}^{n} 0.5 i x_{i}\right)^{4}$ [-5, 10] 0

Table 3

Performance comparison between different algorithms"

函数 维数 算法 最优值 最差值 平均值 标准差 成功率/% 平均耗时/s
IBSA 0 0 0 0 100 1.464 4
10 BSA 0 0 0 0 100 1.865 5
PSO 1.670×10-134 6.565×10-45 6.565×10-47 6.565×10-46 97 1.187 2
IBSA 0 0 0 0 100 1.440 7
F1 20 BSA 0 0 0 0 100 1.826 9
PSO 5.522×10-7 3.037×10-3 2.129×10-4 4.340×10-4 0 1.217 4
IBSA 0 0 0 0 100 1.510 2
50 BSA 0 0 0 0 100 1.914 6
PSO 0.841 2.251×101 6.463 4.061 0 1.302 9
IBSA 0 0 0 0 100 1.829 9
10 BSA 2.579×10-252 5.409×10-187 7.623×10-189 0 100 2.230 9
PSO 7.388×10-53 1.621×10-4 4.465×10-6 2.167×10-5 0 1.596 4
IBSA 0 0 0 0 100 2.263 6
F2 20 BSA 3.363×10-247 3.795×10-165 4.579×10-167 0 100 2.712 6
PSO 1.359×10-2 2.687 3.255 3.694 0 2.081 7
IBSA 0 0 0 0 100 3.615 9
50 BSA 1.157×10-251 1.243×10-170 1.243×10-172 0 100 3.995 4
PSO 2.576 2.461 7.731 3.557 0 3.313 6
IBSA 4.303×10-221 7.367×10-195 1.539×10-196 0 100 1.833 9
10 BSA 7.813×10-112 2.020×10-77 2.102×10-79 2.020×10-78 20 2.299 6
PSO 7.269×10-5 1.331×10-1 1.326×10-2 2.201×10-2 0 1.617 4
IBSA 1.892×10-223 2.538×10-179 2.538×10-181 0 100 1.897 8
F3 20 BSA 7.098×10-110 6.962×10-74 6.962×10-76 6.962×10-75 15 2.317 0
PSO 2.199×10-1 3.028 1.029 0.597 0 1.581 6
IBSA 5.854×10-220 4.740×10-187 4.740×10-189 0 100 2.022 0
50 BSA 1.339×10-111 1.445×10-77 1.704×10-79 1.466×10-78 14 2.353 3
PSO 6.468 1.965×101 1.309×101 3.204 0 1.689 1
IBSA 0 0 0 0 100 1.453 1
10 BSA 5.489×10-247 7.667×10-182 7.669×10-184 0 100 1.822 3
PSO 1.066×10-56 6.109×10-5 6.113×10-7 6.109×10-6 0 1.160 9
IBSA 0 0 0 0 100 1.495 3
F4 20 BSA 4.011×10-247 1.652×10-183 1.808×10-185 0 100 1.858 1
PSO 0.108×10-1 0.762 0.161 0.150 0 1.235 4
IBSA 0 0 0 0 100 1.553 3
50 BSA 3.162×10-249 4.535×10-191 4.538×10-193 0 100 1.905 1
PSO 2.018 1.120×101 5.751 1.798 0 1.287 4
IBSA 1.067×10-216 5.371×10-194 5.510×10-196 0 100 1.940 5
10 BSA 1.331×10-106 8.476×10-84 1.415×10-85 9.703×10-85 24 2.368 1
PSO 4.454×10-7 0.331 0.017 0.042 0 1.722 3
IBSA 2.531×10-225 1.234×10-190 1.234×10-192 0 100 2.323 3
F5 20 BSA 1.036×10-105 7.532×10-74 7.532×10-76 7.532×10-75 21 2.812 9
PSO 9.482×10-3 2.922 0.408 0.551 0 2.064 9
IBSA 1.103×10-222 7.117×10-186 7.117×10-188 0 100 3.563 3
50 BSA 8.997×10-110 8.052×10-82 9.490×10-84 8.125×10-83 19 3.994 9
PSO 1.985 1.801×101 7.424 2.804 0 3.412 2
IBSA 0 0 0 0 100 1.847 6
10 BSA 0 0 0 0 100 2.264 0
PSO 1.990 2.288×101 8.467 3.793 0 1.613 9
IBSA 0 0 0 0 100 2.284 7
F6 20 BSA 0 0 0 0 100 2.688 4
PSO 6.236 4.507×101 1.817×101 5.829 0 2.073 9
IBSA 0 0 0 0 100 3.611 0
50 BSA 0 0 0 0 100 4.151 3
PSO 7.070×101 1.611×102 1.108×102 1.833×101 0 3.481 4
IBSA 0 0 0 0 100 2.261 9
10 BSA 0 0 0 0 100 2.673 1
PSO 0.832 5.868 2.435 0.899 0 2.102 7
IBSA 0 0 0 0 100 2.6604
F7 20 BSA 0 0 0 0 100 3.064 9
PSO 5.983 1.495×101 9.993 2.020 0 2.553 7
IBSA 0 0 0 0 100 3.882 9
50 BSA 0 0 0 0 100 4.294 4
PSO 2.518×101 5.273×101 3.723×101 4.637 0 3.970 0
IBSA 0 0 0 0 100 1.330 2
10 BSA 0 2.020×10-189 2.020×10-191 0 100 1.771 2
PSO 1.765×10-32 1.690×10-6 1.929×10-8 1.693×10-7 0 1.045 5
IBSA 0 0 0 0 100 1.462 0
F8 20 BSA 3.849×10-255 2.245×10-181 2.286×10-183 0 100 1.887 2
PSO 6.275×102 1.441×101 1.555 2.132 0 1.222 7
IBSA 0 0 0 0 100 1.903 9
50 BSA 8.628×10-250 4.011×10-189 4.011×10-191 0 100 2.340 6
PSO 1.284×101 8.807×101 4.002×101 1.65 0 1.672 1
IBSA 0 0 0 0 100 1.329 4
10 BSA 1.186×10-247 2.661×10-171 2.661×10-173 0 100 1.755 7
PSO 5.982×10-67 9.092×10-6 1.244×10-7 9.287×10-07 0 0.994 7
IBSA 0 0 0 0 100 1.327 4
F9 20 BSA 7.775×10-247 5.183×10-187 5.183×10-189 0 100 1.786 3
PSO 0.076 9 2.947×101 1.267 4.044 0 1.081 5
IBSA 0 0 0 0 100 1.705 5
50 BSA 2.081×10-250 6.203 9×10-168 6.203 9×10-170 0 100 2.080 3
PSO 1.158×101 4.111×102 6.729×101 5.663×101 0 1.407 0

Fig.3

Average convergence curve of test functions"

Table 4

Comparisons of the performance of the algorithm in reference[7] and the improved algorithm in this paper"

文献[7]中的函数 算法
最优值 最差值 平均值 方差
F2 IBSA 0 0 0 0
AIBSO 1.051 6×10-24 1.006 4×102 1.634 4 1.052 7×101
F3 IBSA 0 0 0 0
AIBSO 1.509 7×10-18 1.463 1×10-1 5.072 8×10-3 2.187 9×10-2
F7 IBSA 0 0 0 0
AIBSO 0 1.400 4×10-8 3.545 1×10-10 2.030 6×10-9

Table 5

Comparisons of the performance of the algorithm in reference[9] and the improved algorithm in this paper"

文献[9]中的函数 算法 最优值 最差值 平均值 标准差
F1 IBSA 0 0 0 0
LFSABSA 3.47×10-200 8.44×10-152 8.44×10-153 2.67×10-152
F2 IBSA 0 0 0 0
LFSABSA 1.27×10-176 3.55×10-155 2.97×10-156 0
F3 IBSA 0 0 0 0
LFSABSA 7.92×10-12 1.19×10-7 1.42×10-8 3.72×10-8

Table 6

Comparisons of the performance of algorithm in reference[10] and the improved algorithm in this paper"

文献[10]中的函数
算法
最优值 最差值 平均值 标准差
F1 IBSA 0 0 0 0
MMSBSA 2.629 4×10-278 1.867 5×10-214 6.225 0×10-216 4.314 7×10-215
F3 IBSA 3.349 1×10-232 2.146 7×10-190 7.155 6×10-192 0
MMSBSA 1.081 5×10-10 1.523 5×10-5 1.281 9×10-6 3.004 1×10-6
F4 IBSA 1.781 0×10-226 2.521 5×10-191 8.404 9×10-193 0
MMSBSA 3.818 3×10-4 0.133 6 0.013 5 0.034 0
1 YANG Xinshe, DEB Suash. Cuckoo search via levy flights[J]. Processing of World Congress on Nature and Biologically Computing (NaBIC 2009). New Delhi, India: IEEE, 2009: 210-214.
2 陈忠云,张达敏,辛梓芸,等.疯狂蝙蝠算法的低通FIR滤波器设计[J/OL].计算机应用研究.[2019-06-17].http://kns.cnki.net/kcms/detail/51.1196.TP.20190614.1853.050.html.DOI: 10.19734/j.issn.1001-3695.2019.01.0025
CHEN Zhongyun, ZHANG Damin, XIN Ziyun, et al. Design of low pass FIR filter for crazy bat algorithm [J/OL]. Computer Application Research. [2019-06-17]. http://kns.cnki.net/kcms/detail/51.1196.TP.20190614.1853.050.html. DOI: 10.19734/j.issn.1001-3695.2019.01.0025
3 李磊, 高雷阜, 赵世杰. 基于神经网络的粒子群算法优化SVM参数问题[J]. 计算机工程与应用, 2015, 51 (4): 162- 164.
doi: 10.3778/j.issn.1002-8331.1304-0338
LI Lei , GAO Leifu , ZHAO Shijie . Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network[J]. Computer Engineering and Applications, 2015, 51 (4): 162- 164.
doi: 10.3778/j.issn.1002-8331.1304-0338
4 高浩, 冷文浩, 须文波. 一种全局收敛的PSO算法及其收敛分析[J]. 控制与决策, 2009, 24 (2): 196- 201.
doi: 10.3321/j.issn:1001-0920.2009.02.007
GAO Hao , LENG Wenhao , XU Wenbo . A global convergence algorithm of particle swarm optimization and its convergence analysis[J]. Control and Decision, 2009, 24 (2): 196- 201.
doi: 10.3321/j.issn:1001-0920.2009.02.007
5 MENG Xiaobing, LIU Yu, GAO Xiaozhi, et al. A new bio-inspired algorithm: chicken swarm optimization[C]//International Conference in Swarm Intelligence. Hefei, China: Springer, 2014.
6 MENG Xiaobing , GAO Xiaozhi , LI Hualu , et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28 (4): 673- 687.
7 李延延, 万仁霞. 一种改进算的鸟群算法[J]. 微电子学与计算机, 2018, 35 (9): 85- 90.
LI Yanyan , WAN Renxia . An improved bird swarm algorithm[J]. Microelectronics and Computer, 2018, 35 (9): 85- 90.
8 彭君君, 刘勇进. 基于双高斯函数的一种高效鸟群优化算法[J]. 现代电子技术, 2018, 41 (23): 114- 120.
PENG Junjun , LIU Yongjin . An efficient bird swarm optimization algorithm based on double Gauss function[J]. Modern Electronic Technology, 2018, 41 (23): 114- 120.
9 杨文荣, 马晓燕, 边鑫磊. 基于Levy飞行策略的自适应改进鸟群算法[J]. 河北工业大学学报, 2017, (5): 14- 20.
YANG Wenrong , MA Xiaoyan , BIAN Xinlei . Adaptive improved bird swarm algorithm based on Levy flight strategy[J]. Journal of Hebei University of Technology, 2017, (5): 14- 20.
10 王建伟, 彭亦功. 引入迁移和变异策略的改进鸟群算法及其在参数估计中的应用[J]. 华东理工大学学报(自然科学版), 2018, 44 (4): 617- 624.
WANG Jianwei , PENG Yigong . Improved bird swarm algorithm with migration and mutation strategy and its application in parameter estimation[J]. Journal of East Polytechnic University (Natural Science Edition), 2018, 44 (4): 617- 624.
11 张伟伟, 刘勇进, 彭君君. 改进鸟群算法用于SVM参数选择[J]. 计算机工程与设计, 2017, 38 (12): 85- 89.
ZHANG Weiwei , LIU Yongjin , PENG Junjun . Improved bird swarm algorithms for SVM parameter selection[J]. Computer Engineering and Design, 2017, 38 (12): 85- 89.
12 崔东文, 金波. 改进鸟群算法及其在梯级水库优化调度中的应用[J]. 三峡大学学报(自然科学版), 2016, 38 (6): 7- 14.
CUI Dongwen , JIN bo . Improved bird swarm algorithm and its application to reservoir optimal operation[J]. Journal of Three Gorges University (Natural Science Edition), 2016, 38 (6): 7- 14.
13 KN L, REDDY D B R, KALAVATHI D M S. Snow finch bird swarm optimization algorithm for solving reactive power problem [J/OL]. International Journal of Mathematical Engineering & Management Sciences, 2016. https://www.researchgate.net/publication/310772750_Snow_finch_Bird_Swarm_Optimization_Algorithm_For_Solving_Reactive_Power_Problem.
14 HAUPT R L , HAUPT S E . Practicalgenetic algorithm[M]. Hoboken, USA: Wiley, 2004.
15 RAHNAMAYAN S, JESUTHASAN J, et al. Computing opposition by involving entire population[C]//IEEE Congress on Evolutionary Computation. New York, UK: IEEE, 2014: 1800-1807.
16 TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of International Conference on Intelligent Agent, Web Technologies and Internet Commerce. Vienna, Austria: IEEE, 2005: 695-701.
17 XU Q , WANG L , WANG N , et al. A review of opposition-based learning from 2005 to 2012[J]. Engineering Applications of Artificial Intelligence, 2014, (29): 1- 12.
18 黄洋, 鲁海燕, 许凯波, 等. 基于S型函数的自适应粒子群优化算法[J]. 计算机科学, 2019, 46 (1): 252- 257.
HUANG Yang , LU Haiyan , XU Kaibo , et al. Adaptive particle swarm optimization algorithm based on S-type function[J]. Computer Science, 2019, 46 (1): 252- 257.
19 艾兵, 董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36 (3): 687- 691.
AI Bing , DONG Minggang . Improved particle swarm optimization algorithm based on gauss perturbation and natural selection[J]. Computer Applications, 2016, 36 (3): 687- 691.
20 张迅, 王平, 邢建春, 等. 基于高斯函数递减惯性权重的粒子群优化算法[J]. 计算机应用研究, 2012, 29 (10): 3710- 3712.
doi: 10.3969/j.issn.1001-3695.2012.10.027
ZHANG Xun , WANG Ping , XING Jianchun , et al. Particle swarm optimization based on gauss function decreasing inertial weight[J]. Computer Applied Research, 2012, 29 (10): 3710- 3712.
doi: 10.3969/j.issn.1001-3695.2012.10.027
[1] Shiqi SONG,Yan PIAO,Zexin JIANG. Vehicle classification and tracking for complex scenes based on improved YOLOv3 [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 27-33.
[2] Ningning CHEN,Jianwei ZHAO,Zhenghua ZHOU. Visual tracking algorithm based on verifying networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 17-26.
[3] Yuenan ZHAO,Guiyou CHEN,Chen SUN,Ning LU,Liwei LIAO. Risk assessment method based on spatial hidden danger distribution and motion intention analysis [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 28-34.
[4] Jialin SU,Yuanzhuo WANG,Xiaolong JIN,Xueqi CHENG. Entity alignment method based on adaptive attribute selection [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 14-20.
[5] Guoyong CAI,Qiang LIN,Kaiqi REN. Cross-domain text sentiment classification based on domain-adversarialnetwork and BERT [J]. Journal of Shandong University(Engineering Science), 2020, 50(1): 1-7,20.
[6] Yuanxi YAO. Analysis of wind power convergence trend quantitation based on sub-scene reconstruction [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 86-92.
[7] Ji ZHANG,Cui JIN,Hongyuan WANG,Shoubing CHEN. Pedestrian recognition based on singular value decomposition pedestrian alignment network [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 91-97.
[8] Junmei YUE,Dongmei ZHANG. Lightweight self-adaptive CSI-based positioning algorithm in underground mine [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 112-118.
[9] Zongtang ZHANG,Sen WANG,Shilin SUN. An ensemble learning algorithm for unbalanced data classification [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 8-13.
[10] Xindi CHEN,Tianrui LI,Huanhuan YANG. Visualization of interactive ThemeRiver based on time-series data [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 29-35, 43.
[11] Jinchao HUANG. Object tracking algorithm based on deep residual features and entropy energy optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 14-23.
[12] Jiachen WANG,Xianghong TANG,Jianguang LU. Research onfeature selection technology in bearing fault diagnosis [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 80-87, 95.
[13] Hongbin ZHANG,Diedie QIU,Renzhong WU,Tao ZHU,Jin HUA,Donghong JI. Image attribute annotation based on extreme gradient boosting algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 8-16.
[14] Xiaoxiong HOU,Xinzheng XU,Jiong ZHU,Yanyan GUO. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 74-79.
[15] Xu YANG,Hui CHEN,Yousi LIN,Changhe TU. Automatic landmarks identification and tracking of bat flight [J]. Journal of Shandong University(Engineering Science), 2019, 49(2): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Ke,LIU Chang-chun,LI Tong-lei . Medical registration approach using improved maximization of mutual information[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 107 -110 .
[2] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[3] LIU Zhongguo,ZHANG Xiaojing,LIU Boqiang,LIU Changchun, . The development of ultrasonic characterization of the biological tissue elasticity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 34 -38 .
[4] YUE Yuan-Zheng. Relaxation in glasses far from equilibrium[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 1 -20 .
[5] QU Yan-peng,CHEN Song-ying,LI Chun-feng,WANG Xiao-peng,TENG Shu-ge . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(4): 16 -20 .
[6] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[7] SHI Wen-Hua, LIU Wei-Dong, SUN Yong-Fu. Research of 1/3 dam breach simulation and personnel evacuation scenario based on digital elevation model DEM in a quake lake[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 144 -148 .
[8] WANG Kai,SUN Feng-zhong,ZHAO Yuan-bin,GAO Ming,GAO Shan . Mathematical model and numerical simulation of the air inlet flowfield of a natural-draft cooling tower[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 13 -17 .
[9] ZHANG Bo,LI Shu-cai,YANG Xue-ying,WANG Xi-ping,ZHANG Dun-fu . Numerical analysis on the stability of a rocksalt roadbed with two circular cavities [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 66 -69 .
[10] CAO Gang, DONG Chao-Yang, HUANG Ji-Bao, XUE Yu-Qing. Power system inter-area oscillation damping control with FACTS devies[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 31 -36 .