Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (2): 10-16.doi: 10.6040/j.issn.1672-3961.0.2019.318
• Machine Learning & Data Mining • Previous Articles Next Articles
CLC Number:
1 |
AGHAJAN H K , KAILATH T . Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 1993, 2 (4): 454- 65.
doi: 10.1109/83.242355 |
2 | GERCHBERG R . Super-resolution through error energy reduction[J]. J Modern Optics, 1974, 21 (9): 709- 720. |
3 | GLASNER D, BAGON S, IRANI M. Super-resolution from a single image[C]//2009 IEEE 12th International Conference on Computer Vision (ICCV). Maimi, USA: IEEE, 2009. |
4 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2015. |
5 |
KAPPELER A , YOO S , DAI Q , et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 2 (2): 109- 122.
doi: 10.1109/TCI.2016.2532323 |
6 |
MUHAMMAD H , RAHMAT W M , HAJIME N . Inception learning super-resolution[J]. Applied Optics, 2017, 56 (22): 6043- 6053.
doi: 10.1364/AO.56.006043 |
7 | SHI W, CABALLERO J, HUSZAR, FERENC, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. |
8 | LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]// Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. |
9 | TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]// IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017. |
10 | DONG C , LOY C C , HE K , et al. Image super-resolution using deep convolutional networks[J]. IEEE Trans Pattern Anal Mach Intell, 2014, 38 (2): 295- 307. |
11 | KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015. |
12 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2015. |
13 | DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//ECCV2016 14th European Conference. Amsterdam, the Netherlands: ECCV, 2016. |
14 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Honolulu, USA: IEEE, 2017. |
15 | MAO X J, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[C]//Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016. |
16 | BLAU Yochai, MICHAELI Tomer. The perception-distortion tradeoff[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake, USA: IEEE, 2018. |
17 | TAI Y, YANG J, LIU X. Image super-resolution via deep recursive residual network[C]//IEEE Computer Vision and Pattern Recognition (CVPR 2017). Honolulu, USA: IEEE, 2017. |
18 | LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C]//IEEE 2018 Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE, 2018. |
19 |
IRANI M , PELEG S . Motion analysis for image enhancement: resolution, occlusion, and transparency[J]. Journal of Visual Communication and Image Representation, 1993, 4 (4): 324- 335.
doi: 10.1006/jvci.1993.1030 |
20 |
WANG Z , BOVIK A C , SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861 |
21 | DENG Ruoxi , LIU Shengjun . Relative depth order estimation using multi-scale densely connected convolutional networks densely connected convolutional networks[J]. IEEE, 2019, 7 (1): 38630- 38643. |
22 | SZEGEDY C , LIU W , JIA Y , et al. Going deeper with convolutions[J]. CoRR, 2014, 2 (1): 1409- 1420. |
23 | AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. |
24 |
KIM K I , KWON Y . Single-image super-resolution using sparse regression and natural image prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (6): 1127- 1133.
doi: 10.1109/TPAMI.2010.25 |
25 | ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Curves and Surfaces 7th International Conference, 2010. Avignon, France: Springer, 2012. |
26 | MARTIN D R , FOWLKES C , TAL D , et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[J]. Proceedings of the Eighth International Conference On Computer Vision, 2001, 2 (11): 416- 423. |
27 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. |
28 | KANNAN A, YOUNG P, RAMAVAJJALA V, et al. Smart reply: automated response suggestion for email[C]//22nd ACM SIGKDD International Conference. San Francisco, USA: ACM, 2016. |
29 |
RAMAKRISHNAN B , RAO S S . A general loss function based optimization procedure for robust design[J]. Engineering Optimization, 1996, 25 (4): 255- 276.
doi: 10.1080/03052159608941266 |
30 |
ALZATE C , SUYKENS J Kernel . Component analysis using an epsilon-insensitive robust loss function[J]. IEEE Transactions on Neural Networks, 2008, 19 (9): 1583- 1598.
doi: 10.1109/TNN.2008.2000443 |
[1] | ZHANG Yuefang, DENG Hongxia, HU Chunxiang, QIAN Guanyu, LI Haifang. Hippocampal segmentation combining residual attention mechanism and generative adversarial networks [J]. Journal of Shandong University(Engineering Science), 2020, 50(6): 76-81. |
[2] | Jinchao HUANG. Object tracking algorithm based on deep residual features and entropy energy optimization [J]. Journal of Shandong University(Engineering Science), 2019, 49(4): 14-23. |
[3] | YAN Zi-ye, LU Yao, LI Jian-wu, MA Yue. Kernel principal components analysis based super resolution method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 101-105. |
[4] | . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 27-32. |
|